
Constructing Noise-Invariant Representations of Sound
in the Auditory Pathway
Neil C. Rabinowitz1,2*, Ben D. B. Willmore1, Andrew J. King1, Jan W. H. Schnupp1*

1 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom, 2 Center for Neural Science, New York University, New York, New York,

United States of America

Abstract

Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly
understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system
to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the
sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics.
Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends
the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds,
recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and
comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of
adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics
contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds
embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population
code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical
code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the
strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to
sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound
representations in the higher auditory brain.
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Introduction

Because our auditory world usually contains many competing

sources, behaviorally important sounds are often obscured by

background noise. To accurately recognize these sounds, the

auditory brain must therefore represent them in a way that is

robust to noise. Previous work has suggested that the auditory

system does build such sound representations. In the auditory

periphery, sounds are represented in terms of their physical

structure, including any noise [1–3], while data from human

imaging studies suggest that, in higher areas of auditory cortex

(AC), relevant sounds are represented in a more context-

independent, categorical manner [4–8]. However, we know very

little about the neural computations that might generate noise

invariance or where exactly along the auditory pathway this is

achieved.

We do, on the other hand, know that the firing patterns of

individual auditory neurons change with acoustic context.

Numerous experiments have varied the statistics of sound

stimulation, such as sounds’ overall intensity, modulation depth,

or contrast, or the presence of background noise. In response to

these manipulations, auditory neurons from the periphery to

primary cortex have been observed to change their gain [9–12],

temporal receptive field shape (i.e., modulation transfer function,

MTF) [9,11,13–17], spectral receptive field shape [18,19], and

output nonlinearities [20,21], or they undergo more complex

changes in response patterns [22,23]. These changes have been

explored or explained in terms of signal detection theory [11],

efficient coding [17,20,24], or maintaining sensitivity to ecologi-

cally relevant stimuli [21,23]. Such forms of adaptation—not to

the repetition of a fixed stimulus, but to the statistics of ongoing

stimulation—offer a plausible neural mechanism for the construc-

tion of noise-invariant representations. A population of neurons

that adapts to the constant statistics of a background noise could

become desensitized to that noise, while still accurately represent-

ing simultaneously presented, modulated foreground sounds.

Here, we investigated whether adaptation to stimulus statistics

in the auditory system enables the brain to build noise-invariant

representations of sounds. To do this, we carried out three

experiments. First, we measured neural responses to complex
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sounds embedded in stationary noise, by recording from single

units and small multi-unit clusters in the auditory midbrain and

cortex and by simulating responses in the auditory periphery. We

find that as one progresses through the auditory pathway, neural

responses become progressively more independent of the level of

background noise. Second, we measured how the coding of

individual neurons in these auditory centers is affected by the

changes in stimulus statistics induced by adding background noise.

We find that there is a progressive increase through the auditory

pathway in the strength of adaptation to the altered stimulus

statistics. Third, we considered how the noise-dependent responses

of individual units combine to produce population codes.

Population representations are usually addressed only indirectly,

for example, by summing up results from individual units (though

see [25,26]), but here we investigated these directly, by asking how

well the original, ‘‘clean’’ sounds could be decoded from the

population responses to noise-tainted stimuli. We find a progres-

sive increase in the noise tolerance of population representations of

sound. Moreover, neuron-level changes in the strength of

adaptation and population-level changes in the noise tolerance

of decoding are well correlated both within and across auditory

centers. This suggests that adaptation to stimulus statistics may

indeed be a neural mechanism that drives the construction of

noise-tolerant representations of sound.

Results

We recorded neural responses in the central nucleus of the

inferior colliculus (IC) and the primary fields of the AC in ferrets,

while presenting a set of natural sounds in high and low signal-to-

noise ratio (SNR) conditions (referred to as ‘‘clean’’ and ‘‘noisy’’

below). We compared these recorded neural responses against a

sophisticated model of sound representation in the auditory nerve

(AN) [27]. The simulated auditory nerve (sAN) model captures the

functional components of the auditory periphery from the middle

ear to the AN, including the adaptation that occurs at synapses

between inner hair cells and AN fibers.

We presented four audio segments (two speech, two environ-

mental), to which spectrally matched noise had been added. In the

‘‘clean’’ condition, the SNR was 20 dB; in the ‘‘noisy’’ conditions,

SNRs were 10 dB, 0 dB, or 210 dB (Figure 1). Fifty different

noise tokens were used, so that responses reflected the average

properties of the noise. We refer to the sounds in the clean

condition as being the signal, and the sounds in the noisy

conditions as being the signal plus noise. The noise we used was

stationary—that is, its statistics did not change over time; it also

had a flat modulation spectrum and no cross-band correlation.

Such noises are exemplified by the sounds of rain, vacuum

cleaners, jet engines, and radio static [17,28]. We used this

subclass of noise as such sounds are almost always ecologically

irrelevant, and their statistics differ from those of relevant signals;

the signal/noise distinction was therefore as unambiguous as

possible. Very little sound signal was detectable to our ears in the

noisiest condition, which lies close to the threshold of human and

animal speech recognition abilities during active listening [25,29–

31].

For each auditory center (sAN, IC, AC), we measured how the

neural coding of sounds changed as background noise was

introduced. We found that, as we progressed from sAN to IC to

AC, the distribution of neural responses became progressively

more tolerant (i.e., less sensitive) to the level of background noise.

This was evident at the gross level, as the distribution of sAN firing

rates for each unit, P(y), changed considerably as a function of the

background noise level, while IC firing rates changed less, and AC

even less so (Figure 2A–B). More notably, when we conditioned

these response distributions on each 5 ms stimulus time bin, the

response distributions P(yDstim) became more statistically inde-

pendent of the background noise level from sAN to IC to AC

(Figure 2C). This demonstrates that neural responses to complex

sounds become less sensitive to background noise level as one

ascends the auditory pathway.

Adaptive Coding
What underlies this shift in coding, such that the responses of

neurons in higher auditory centers are overall more tolerant to

noise? To understand this, we considered three ways in which

noise affects signals within auditory neurons’ receptive fields

(Figure 3A).

First, noise is an energy mask: when components of the original

signal have intensities (within the receptive field) lower than that of

the noise, they are obscured. Second, although the statistics of

noise might not change over time, the noise itself is a time-varying

stimulus, and auditory neurons may respond to noise transients

[32,33]. Because neurons in higher auditory centers progressively

filter out faster temporal modulations [1], the energy of noise

transients within neurons’ linear receptive fields decreases from

AN to IC to AC. However, simulations demonstrate that this alone

cannot account for the observed differences in noise independence

(Figure S1).

Finally, adding noise affects the statistics of the stimulus within

the receptive field in two ways: it increases the baseline intensity,

and it reduces the effective size of the peaks in intensity above the

baseline—that is, it lowers the contrast. These effects can be

roughly summarized as changing the mean (m) and standard

deviation (s) of the stimulus intensity distribution (which is,

incidentally, non-Gaussian [24,34,35]).

If auditory neurons faithfully encoded stimuli within their

receptive fields—irrespective of the stimulus statistics—then the

response distributions would change their m and s along with the

stimulus distribution. However, if neurons adapted to the

statistics—for example, by normalizing their responses relative to

the local m and s—then the response distributions would change

less with the addition of noise (Figure 3B). Indeed, as shown above,

the response distributions of sAN units changed considerably when

noise was introduced, while those of IC units changed less, and

cortex even less so. The increased noise tolerance in higher

Author Summary

We rarely hear sounds (such as someone talking) in
isolation, but rather against a background of noise. When
mixtures of sounds and background noise reach the ears,
peripheral auditory neurons represent the whole sound
mixture. Previous evidence suggests, however, that the
higher auditory brain represents just the sounds of
interest, and is less affected by the presence of back-
ground noise. The neural mechanisms underlying this
transformation are poorly understood. Here, we investi-
gate these mechanisms by studying the representation of
sound by populations of neurons at three stages along the
auditory pathway; we simulate the auditory nerve and
record from neurons in the midbrain and primary auditory
cortex of anesthetized ferrets. We find that the transfor-
mation from noise-sensitive representations of sound to
noise-tolerant processing takes place gradually along the
pathway from auditory nerve to midbrain to cortex. Our
results suggest that this results from neurons adapting to
the statistics of heard sounds.

Noise-Invariant Sound Representations
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auditory centers may therefore result from a progressive increase

in the strength of adaptation to stimulus statistics along the

auditory pathway.

m- and s-Adaptation Grow Stronger Along the Auditory
Pathway

Given our reasoning above, we predicted that neuronal

adaptation to m and s would increase along the auditory pathway.

Previous experiments have shown that m-adaptation increases

from AN to IC [20,36] and that there is strong s-adaptation in AC

[10,12]; however, the overall changes in m- and s-adaptation

across the auditory pathway are unknown.

We first tested the hypothesis that m-adaptation increases along

the auditory pathway. Taking the neural responses to natural

sounds, we quantified the degree to which introducing back-

ground noise changed the neural responses during the ‘‘baseline’’

periods of sound stimulation, such as when there was little

stimulus energy within neurons’ receptive fields to drive spiking.

Rather than attempt to estimate neurons’ receptive fields, we

instead measured the relevant responses operationally. We

defined a reference firing rate for each unit, yref , at the 33rd

percentile of that unit’s firing rate distribution during clean sound

stimulation. We then calculated how often the firing rate

exceeded yref under different noise conditions (Figure 4A). The

motivation for this measure is that, when m-adaptation is weak,

responses are sensitive to the baseline intensity of the stimulus, so

adding noise should drive this value up. If m-adaptation is strong,

such that the neuron adapts out the increased baseline intensity of

the stimulus, then the firing rate should exceed yref about as often

in the noisy conditions as in the clean condition. We refer to these

two possibilities as being of low, or high, baseline invariance (BI),

respectively.

Figure 1. Single unit responses to clean and noisy sounds. Left column, the spectrogram of a segment of speech under four noise conditions,
with the noise level increasing (i.e., the SNR decreasing) from top to bottom. Second to fourth columns, example rasters showing the responses of
sAN responses and of responses recorded in the IC and AC, over 50 stimulus presentations. Gray lines, average PSTH.
doi:10.1371/journal.pbio.1001710.g001

Figure 2. Along the auditory pathway, neurons’ response distributions become increasingly independent of the level of
background noise. (A) Average distribution of normalized firing rates by location/SNR. For each unit, y�~y=max(y20), where y is the firing rate. This
shows that the average response distribution within the population changes less with noise in higher auditory centers. (B) Kullback–Leibler
divergence between individual units’ normalized firing-rate distributions evoked from clean sounds and evoked from noisy sounds. Smaller values
indicate that firing rate distributions were similar. This shows that individual neurons’ response distributions change less with noise in higher auditory
centers. (C) Statistical independence of stimulus-conditioned response distributions P(yDstim) to the background noise level (see Materials and
Methods for details of metric). Lower values indicate that response distributions were highly dependent on the stimulus SNR; a value of 1 indicates
that response distributions were completely independent of the stimulus SNR. Median values of 0.80/0.84/0.88 for sAN/IC/AC (pv10{4 , pairwise
rank-sums tests).
doi:10.1371/journal.pbio.1001710.g002

Noise-Invariant Sound Representations
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Introducing noise caused sAN fibers to change their firing

relative to yref the most, and AC units the least (Figure 4B; median

BI of 87/96/98% for sAN/IC/AC; pv0:0005). Similar results

were obtained with yref placed at other percentiles between 10%

and 50%. This confirms that m-adaptation increases along the

auditory pathway.

We next tested the hypothesis that s-adaptation increases along

the auditory pathway, by comparing how changes in contrast

affect the gain of neurons at each location [10,12]. We analyzed

units’ responses to dynamic random chord (DRC) sequences of

differing contrasts (Figure 5A). DRCs comprise a sequence of

chords, composed of tones whose levels are drawn from particular

distributions. This allows efficient estimation of the spectro-

temporal receptive fields (STRFs) of auditory neurons [37–39].

Varying the width of the level distributions allows parametric

control over stimulus contrast. As in previous studies [10,12], we

modeled neuronal responses using the linear–nonlinear (LN)

framework [40,41], assuming that each neuron had a fixed (i.e.,

contrast-independent) STRF and a variable (contrast-sensitive)

output nonlinearity. Contrast-dependent changes in coding are

thus revealed through changes to output nonlinearities [10,12].

Changing contrast had little effect on sAN coding, but caused

small gain changes for IC units, and large gain changes for cortical

units (Figure 5B; further examples in Figure S2). Higher in the

auditory pathway, contrast-dependent gain changes were stronger

(sAN/IC/AC medians: 11/27/44%; pv0:001; Figure 5D), oc-

curred on slower timescales (time constants t negligible/35/

117 ms for sAN/IC/AC; pv10{5; Figure S3), and were more

important to adaptive-LN model predictive power (median

improvement over LN model for sAN/IC/AC: 8/10/20%; not

significant for sAN vs. IC, p%0:001 otherwise; Figure 5E) [12].

We confirmed this with a Fisher information analysis: by

comparing how much Fisher information a unit typically carried

in its firing rate about a low contrast stimulus when it was adapted

to low contrast with the amount it typically carried about the same

stimulus when it was adapted to high contrast, we found that

contrast-adaptive changes in coding were more profound higher

up in the auditory pathway (Figure 5F; median Dlog(info) of 0.6/

1.0/2.0 for sAN/IC/AC; p%0:001). Thus there is an increase in

s-adaptation along the auditory pathway.

Population Representations of Sound
Given that m- and s-adaptation increase along the auditory

pathway, how does this affect the representation of complex

sounds by populations of auditory neurons? To answer this, we

used a stimulus reconstruction method [42–45] that quantified

how accurately the spectrogram of a presented sound could be

reconstructed from the neuronal responses of each population.

The reconstruction was done as follows. We first trained a

spectrogram decoder on the population’s responses to clean

sounds (Figure 6). This decoder was based on a dictionary

approach (see Materials and Methods section ‘‘Population

Decoding’’). We then tested the decoder on a novel set of

responses to clean sounds and measured how close the

reconstructed spectrograms, Rclean, were to the original sound

spectrograms, Sclean, using a similarity metric, SRclean, ScleanT.

These measurements quantify the degree to which the spectro-

gram of the clean sounds was encoded in the population responses.

For all three auditory centers, reconstruction accuracy increased

with population size (Figure 7A). The best reconstructions were

available from sAN responses; reconstructions from IC and AC

were less accurate. This is likely to be due to several factors. In

particular, the synthetic sAN population provided more uniform

coverage of the frequency spectrum (Figure S4), and contained less

trial-to-trial variability than the recorded data. Also, both IC and

AC are well known to have greater low-pass modulation filtering

[1], which should reduce the overall fidelity of the spectrogram

encoding at these higher auditory centers.

What Is Being Encoded by Neural Populations?
Our interest was not in the absolute performance of these

decoders, but rather in how the stimulus representations

Figure 3. Effect of background noise on incoming signals within neurons’ receptive fields. (A) Left, sound intensity within a cortical
neuron’s receptive field for clean (20 dB) and noisy (0 dB) stimulation (see Figure S1B). Right, distribution of the sounds’ within-channel intensities. (B)
Signals in (A) after adaptation to signal statistics.
doi:10.1371/journal.pbio.1001710.g003

Figure 4. Increasing adaptation to stimulus baseline along the
auditory pathway. (A) Calculation of BI, a measure of m-adaptation,
for an example sAN fiber. CDF, cumulative distribution of firing rates.
yref , the 33rd percentile of the CDF under clean sound stimulation —
that is, the firing rate with the cumulative probability q20:
P(y20wyref )~2=3. BI indicates how little q changes with SNR, as
BI~(1{ q0{q20j j)|100%. (B) Units’ BI in each location.
doi:10.1371/journal.pbio.1001710.g004

Noise-Invariant Sound Representations
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Figure 5. Increasing adaptation to stimulus contrast along the auditory pathway. (A) Schematic of adaptive-LN model. Top/bottom, DRC
stimuli. DRCs are filtered through a STRF, then passed through an output nonlinearity, yielding the firing rate (ŷyt). Output nonlinearities change with
stimulus contrast. Insets, example time series. (B) Example units, nonlinearities during low (blue) and high (red) contrast DRCs. Insets, STRFs. Bottom,
distributions of STRF-filtered DRCs under low/high contrast. (C) Nonlinearities in (B), replotted in normalized coordinates. (D) Contrast-dependent

Noise-Invariant Sound Representations
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changed with the addition of background noise. We began by

asking, what are sAN, IC, and AC encoding in their population

responses? This is a difficult question to address since the

dimensionality of a population response is very high. We

therefore recast this problem as follows. We considered a

scenario where the higher brain has learned to recognize sounds

in the absence of noise, based on the respective encodings in

sAN, IC, and AC. We then asked what would happen if the

brain then tries to extract sound features from responses to the

noisy sounds, if it is assumed that neural populations encode

sound features in exactly the same way as when noise was

absent.

changes to the slope of units’ nonlinearities. (E) Percentage of residual signal power explained by gain kernel model above an LN model [12]. (F) Log
increase in Fisher information in units’ encoding of low contrast stimuli, resulting from adaptation to this distribution. Zero, no adaptation. Larger
positive values, greater adaptation.
doi:10.1371/journal.pbio.1001710.g005

Figure 6. Decoding the population representations of clean and noisy sounds. Schematic of the decoding of neural responses. For each
auditory center, a decoder was trained to reconstruct the clean sound spectrogram from the population responses to the clean sounds. We then
measured the performance of these decoders when reconstructing spectrograms from the responses to both clean and noisy sounds. Top row,
spectrogram of a 2 s segment of speech stimulus, in the clean (20 dB SNR) and noisy (10/0/210 dB SNR) conditions. Left column, decoder training
from responses to clean sounds. Population responses are shown as neurograms: each row depicts the time-varying firing rate of a single unit in the
population; rows are organized by CF. Right, reconstructed spectrograms (R) from population responses to noisy sounds, using the same decoders as
trained on the left. The similarity between the reconstructed spectrogram R and the presented spectrogram Snoisy is measured by SR, SnoisyT;
likewise, the similarity between R and the original, clean spectrogram Sclean is measured by SR, ScleanT. The tendencies for the sAN decoder to
produce Snoisy-like spectrograms, and the IC and AC decoders to produce Sclean-like spectrograms, are most visible for the 0 dB and 210 dB
conditions.
doi:10.1371/journal.pbio.1001710.g006

Noise-Invariant Sound Representations
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We considered two hypotheses for what might happen. First,

when the brain attempts to reconstruct stimulus features from the

noisy sounds, it might accurately recover the whole sound mixture,

containing the superimposed signal and noise. Alternatively, the

reconstructed stimulus might include the signal alone, and not the

noise. We denote these two possibilities as ‘‘mixture’’-like and

‘‘signal only’’–like representations. These are two ends of a

spectrum: the sAN, IC, and AC populations may show different

degrees of ‘‘mixture’’-like and ‘‘signal only’’–like coding.

To test these hypotheses, we used the same decoders (which had

already been trained on the clean stimuli) to reconstruct the

stimulus spectrograms from the responses of the three populations

to the noisy sounds. We quantified how the accuracy of the

reconstructed spectrograms (Rnoisy) changed across noise levels, by

measuring the similarity of Rnoisy both to the presented, noisy

spectrograms (SR, SnoisyT; Figure 7B) and to the spectrogram of

the original, clean sound (SR, ScleanT; Figure 7C). To be able to

compare these values across different populations, we normalized

these measurements, by dividing them by that population’s value

of SRclean, ScleanT (the absolute performance of the decoder on the

clean sound responses). We denote the normalized values as

SR, SnoisyT� and SR, ScleanT�, respectively.

The rationale for these measurements was as follows. If the

reconstructed spectrogram contains both the signal and the noise,

then R should be more similar to the spectrogram of the noisy,

presented sound, Snoisy, than it is to the spectrogram of the

original, clean sound, Sclean, which contains the signal alone. Thus,

SR, ScleanT�{SR, SnoisyT� would be less than 0. On the other

hand, if the reconstructed spectrogram contains the signal, but not

the noise, then R should be more similar to Sclean than to Snoisy,

and so SR, ScleanT�{SR, SnoisyT� would be greater than 0.

For the sAN responses, we found that

SR, ScleanT�{SR, SnoisyT�v0. This indicates that, using a fixed

decoder, both the signal and the noise are extracted from the sAN

responses. In other words, the noise directly impinges on the

encoding of the signal in the sAN responses. The reverse was true

for AC, where SR, ScleanT�{SR, SnoisyT�w0. This indicates that,

using a fixed decoder, the signal can be extracted from the AC

responses, without recovering much of the noise. The IC responses

lay between these two extrema (Figure 7D).

It is important to emphasize here that this does not imply that

noise features are altogether discarded by the level of the cortex,

and not represented at all. The decoders here were specifically

trained to extract the clean signal; these results therefore highlight

how much or how little the encoding of the original signal is

affected by the addition of background noise. As we used new

noise tokens on each presentation, it was not possible to train

decoders to extract the noise in the mixture from the response

(rather than the clean sound), nor to accurately determine the

extent to which transient noise features can be recovered from

population responses. We therefore treat the noise here as a

nuisance variable—that is, as a distractor from the encoding of the

ecologically more relevant components of the sound signal.

In sum, while population representations in the periphery are

more ‘‘mixture’’-like, insofar as stationary noises are encoded in a

similar way as complex sounds, there is a shift towards more

‘‘signal only’’–like population representations in midbrain and

then cortex, wherein stationary noise is not encoded together with

the foreground sound.

Figure 7. Population representations of natural sounds
become more noise-tolerant along the auditory pathway. (A)
Similarity between decoded responses to the clean sounds (Rclean), and
the clean sounds’ spectrograms (Sclean). Abscissa, sampled population
size. Colored areas, bootstrapped 95% confidence intervals. (B–C)
Similarity between decoded responses to the noisy sounds (Rnoisy), and
the spectrograms of the presented, noisy sounds (B), or the
spectrograms of the original, clean sounds (C). Reconstructions are
from the full populations in each location. Red bars are the same in (B)
and (C), denoting SRclean, ScleanT (i.e., the rightmost points for each
curve in A). Error bars, bootstrapped 95% confidence intervals. (D) Index
of whether decoded responses were more similar to the presented,
noisy sound (negative values), or the original, clean sound (positive
values). Similarities denoted by asterisks (SR, ST�) are normalized to
the maximum score for each location, SRclean, ScleanT. Error bars, 95%

confidence intervals. Pairwise comparison statistics (bootstrapped):
pv0:001 (***), pv0:01 (**), pv0:05 (*). (E) Decoder accuracy in
recovering the clean sound’s identity from noisy responses, relative to
accuracy in doing so from clean responses.
doi:10.1371/journal.pbio.1001710.g007
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Noise-Tolerant Population Representations of Sound
We next asked a related but different question: If we start with a

population representation of the clean sound, how tolerant is this

representation to the addition of background noise? Unlike the

question above, this requires us to take into account that the

addition of noise degrades any reconstruction (Figure 7B–C).

To measure noise tolerance, we reasoned as follows. The

decoder estimates a relationship between the population response

and the clean sound spectrogram (i.e., the signal). If a population

representation is noise-tolerant, such that the response does not

change considerably when background noise is added, then Sclean

should be as accurately recovered from responses to the noisy

sounds as it is from the clean sounds (i.e., SR, ScleanT� should be

high). Conversely, if the population representation is noise-

intolerant, such that the response changes considerably when

background noise is added, then Sclean should be more poorly

recovered from responses to the noisy sounds than from responses

to the clean sounds (i.e., SR, ScleanT� should be low). We found

that for moderate noise levels, the value of SR, ScleanT� was

highest for the AC, and lowest for the sAN (Figure 7E). This

suggests that cortex maintains a more consistent representation of

the signal as noise is added.

Thus, the population representations of sound change through

the auditory pathway. In the periphery, neural populations that

encode the signal also encode the noise in a similar way,

responding to features of the mixed input. By the level of the

cortex, however, neural populations represent the signal in a more

noise-tolerant fashion, by responding to the sound features that are

common between clean and noisy conditions.

Adaptive Coding Partially Accounts for Noise-Tolerant
Populations

Earlier, we demonstrated that adaptation to stimulus statistics

increases along the auditory pathway. We therefore asked whether

this could account for how background noise affects population

representations of complex sounds along the auditory pathway.

To develop this hypothesis, we simulated populations of model

auditory neurons with variable degrees of adaptation to sound

statistics (Figure S5). These simulations confirmed that increasing

m-adaptation and s-adaptation could account for the decoder

results shown in Figure 7D–E. In particular, the simulations made

two specific predictions. The first is that the increase in m-

adaptation along the auditory pathway may be responsible for the

shift from encoding Snoisy (in sAN) to Sclean (in AC), as observed in

Figure 7D. This is because m-adaptation would remove the strong

differences in response baselines between the representations of

clean and noisy sounds (Figure 3B, top). The second prediction is

that the increase in s-adaptation along the auditory pathway could

be responsible for the increased tolerance of Sclean decoding to the

addition of noise, as observed in Figure 7E. This is because s-

adaptation rescales the representation of the stimulus, such that

the peaks in intensity are relatively independent of the noise level

(Figure 3B, bottom).

To test the first prediction—that m-adaptation drives popula-

tions to represent Sclean rather than Snoisy—we subdivided each

neuronal population into four groups according to the neurons’

baseline invariance (BI; our measure of m-adaptation). For

example, in IC, the 20 neurons with lowest BI formed a

subpopulation with mean BI of 83%, and the 20 neurons with

highest BI formed a subpopulation with mean BI of 99%. We then

decoded responses from each of the 12 subpopulations. We found

that the subpopulations with larger BI yielded more Sclean-like

spectrograms upon decoding (Figure 8A). That is, neurons with

stronger adaptation to baseline sound intensity showed more

‘‘signal only’’–like coding than ‘‘mixture’’-like coding. This factor

largely explained the differences in SR, ScleanT�{SR, SnoisyT�

between each level of the pathway (Table S1A).

To test the second prediction—that s-adaptation drives

populations to encode Sclean in a more noise-tolerant fashion—

we again subdivided each population into four groups, by sorting

units by their contrast-dependent gain changes—that is, the extent

of their contrast invariance (our measure of s-adaptation). Those

subpopulations with stronger contrast-dependent gain control

yielded Sclean-representations that degraded less with the addition

of noise. This factor largely explained the differences in

SR, ScleanT� across auditory centers (Figure 8B, Table S1B).

Together, these results support the notion that adaptation to

stimulus statistics is an important mechanism that drives popula-

tions of auditory neurons to represent sounds a noise-tolerant way.

Discussion

Our data show that, as one progresses along the auditory

pathway from the AN to IC to AC, neurons show increasing

adaptation to the mean (m, Figure 4) and contrast (s, Figure 5) of

sounds. This adaptation to stimulus statistics is relevant to hearing

in noisy environments, because an important effect of background

noise is to change these sound statistics. By adapting to such

changes, populations of neurons could, in principle, produce a

relatively noise-invariant code for nonstationary sounds (Figure 3).

Consistent with this hypothesis, we found that population

representations of natural sounds in higher auditory centers show

stronger tolerance to the addition of stationary background noise

(Figure 7), and that this noise tolerance could largely be explained

by increases in m- and s-adaptation (Figure 8). This suggests that

the increase in adaptation to stimulus statistics along the auditory

pathway makes an important contribution to the construction of

noise-invariant representations of sound.

Towards Normalized Representations
The effect of m- and s-adaptation can be understood by

representing the structure of a sound as a time-varying function, st.

The brain does not have direct access to st; instead, when the

sound is produced at a particular amplitude (a) and is heard

against a background of other sounds (bt), the signal that the ear

actually receives is the sound mixture mt~a:stzbt. To identify a

sound, the brain must recover the sound structure, st, without

being confused by the often irrelevant variables a and bt.

Experiments with synthetic DRC stimuli show a shift in coding

away from a raw signal (resembling mt) in the periphery toward a

more normalized signal (resembling st) in the cortex. When the

contrast of DRCs is manipulated, we find that sAN responses to

DRCs are reasonably well described by an LN model without gain

changes. Their firing rate is a function of xt—that is, the DRC

filtered through that neuron’s STRF (Figure 5B). This suggests

that the AN, as a whole, provides a relatively veridical

representation of sound mixtures reaching the ear. In comparison,

many cortical units, and some IC units, adapt to changes in DRC

contrast by changing their gain. These units’ firing rates are not a

function of xt (as in the sAN); they are often better described as a

function of a normalized variable, zt, in which the stimulus

contrast (s) has been divided out (Figure 5C). Even though AC

neurons do not show complete contrast-invariance for these

stimuli (the median AC gain change was 44%; perfect zt-encoding

would be 100% gain change; Figure 5D), AC neurons’ responses

depend less on stimulus contrast than those in IC or sAN. A

similar shift in coding is evident when considering small changes in
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the mean level of a DRC. Whereas each sAN fiber provides a

relatively fixed representation of xt, IC and AC units adjust their

baseline firing rates so that they effectively subtract out the

stimulus mean (Figures S7 and S8). The effect of adaptation to

stimulus statistics is thus that cortex (and, to a lesser degree, IC)

provides a sound representation that is closer to the underlying

sound, st, than to the sound mixture reaching the ear, mt.

Functional Mechanisms for Building Noise-Invariant
Representations

It is likely that adaptation to stimulus statistics is one of several

changes in neural coding that contributes towards the construction

of noise-invariant representations of sounds. Related findings were

obtained by Lesica and Grothe [17], who studied changes in

MTFs of IC neurons under noisy stimulation. Just as our

investigation of m- and s-adaptations was initially motivated by

considering how the statistics of within-receptive field signals

would change under clean and noisy sound stimulation (Figure 3),

so Lesica and Grothe began by investigating the difference in the

amplitude modulation spectra between foreground vocalizations

and background noises. They observed that vocalizations contain

more power in slow (v50Hz) amplitude modulations than

background noises. When the authors presented vocalizations to

gerbils and recorded from neurons in the IC, they found that

single units’ MTFs shifted from being bandpass to more lowpass,

suggesting that IC neurons redirect their coding capacity to

modulation bands of higher SNR under noisy conditions.

Similar results were recently obtained by Ding and Simon [8],

who measured the aggregate activity in human AC via magne-

toencephalography, as subjects listened to speech in spectrally

matched noise. They found that as background noise is added to

speech, the entrainment of aggregate cortical activity to slow

temporal modulations (,4 Hz) in the speech signal remains high,

while entrainment to faster (4–8 Hz) modulations degrades with

noise. Since the gross envelope of the original speech can be

decoded from aggregate responses to the clean and noisy stimuli,

noise induces a change in response gain as well as changes to

MTFs.

The relationship between our observations of increasing s-

adaptation from periphery to cortex, and these previous findings of

changing MTFs in IC neurons and aggregate cortical activity, may

depend on the modulation specificity of the gain changes. For

instance, a nonspecific increase in neural response gain would

manifest as an overall upwards shift in the MTF. Conversely, an

upwards shift within a small region of the MTF corresponds to a

modulation-band–specific increase in gain. One possibility is that

during complex sound stimulation, auditory neurons determine

their gain independently for different modulation ‘‘channels’’ (such

as described in modulation filterbank models [28,46]), as a

function of the signal statistics within each channel. This might

have different effects on MTFs depending on the modulation

spectrum of the background noise. In indirect support of this

possibility, the extent to which the coding of different cells is

affected by a given background noise appears to depend on each

cell’s modulation tuning [47]. An alternative possibility is that

auditory neurons might always become more modulation lowpass

in the presence of background noise, regardless of the noise’s

actual modulation statistics. This might reflect a set of priors about

what is signal and what is noise in an incoming sound mixture.

Our set of unique sounds and background noises was too small to

test these two hypotheses (or even to measure MTFs). Neverthe-

less, if auditory neurons additionally demonstrate modulation-

specific gain in response to noise, it is likely that this effect grows

stronger from periphery to cortex.

These data also provide some insight as to how our results might

extend to more complex classes of background noise. Here, we

have characterized coding changes induced by adding stationary

noise with flat modulation spectra and no cross-band correlations.

Many background sounds have more complex (often 1/f-like)

modulation spectra [28,35]; a greater proportion of their

modulation energy lies within the common passband of midbrain

and cortical auditory neurons. Since our simulations suggest that

greater modulation tuning plays only a small part in enabling

tolerance to noise with flat modulation spectra, it should be less

important still for enabling tolerance to noise with 1/f-like

modulation spectra. We therefore expect that the adaptive coding

Figure 8. Higher m- and s-adaptation explain the increased noise-tolerance of population representations. (A) Relationship between
decoder performance and BI (measure of m-adaptation). Each point represents a subpopulation (one quarter) of the units from each of the sAN/IC/AC
populations, subdivided according to units’ BI (values in Figure 4B). Abscissa, mean BI in the subpopulation. Ordinate, performance of the
subpopulation decoder. Lines, linear fit per SNR. (B) Relationship between decoder performance and CI (measure of s-adaptation), similar to (A). Here,
each point represents a subpopulation (one quarter) of the units from each of the sAN/IC/AC populations, subdivided according to the amount of
units’ contrast adaptation (values in Figure 5D). sAN values of SR, ScleanT� were adjusted for low BI (see Figure S6).
doi:10.1371/journal.pbio.1001710.g008
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we and others describe is crucial for more general classes of

background noise. Beyond this, some background sound textures

also contain correlations across carrier or modulation channels

[28], while others are nonstationary, changing their statistics over

time. An understanding of how these noise features differentially

affect signal encodings along the auditory pathway would require

further experiments utilizing a broader set of background noises.

An alternative hypothesis for how the brain builds noise-

invariant representations of sound is that the very nature of these

representations may be changing along the auditory pathway,

from an emphasis on encoding predominantly spectrotemporal

information in the periphery to encoding information about the

presence of higher level auditory features in cortex. This, for

instance, is a position recently argued for by Chechik and Nelken

[48], based on their investigation of the responses of cat cortical

neurons to the components of natural birdsong. Emerging data

from the avian brain support this idea: the avian analogue of AC

appears to shift its encoding toward sparse representations of song

elements, which can be encoded in a noise-robust manner [49].

Our results relate to this hypothesis by emphasizing that, to the

extent that the mammalian midbrain and cortex do encode

spectrotemporal information about ongoing sounds, they do so in

progressively more normalized coordinates. This captures at least

some (but likely not all) of the proposed representational shifts

from periphery to cortex.

Finally, bottom-up mechanisms are undoubtedly just a part of a

broader infrastructure for selecting and enhancing representations of

particular sounds heard within complex acoustic scenes. In our

experiments, we chose stimuli for which the assignment of the tags

‘‘signal’’ and ‘‘noise’’ (or ‘‘foreground’’/‘‘background,’’ or ‘‘rele-

vant’’/‘‘irrelevant’’) to components of the mixture is reasonably

justified by the different statistical structures of natural and

background sounds [17,28,35,50]. On the other hand, there are also

many real-world situations for which such assignment is ambiguous,

and depends on task-specific demands. Listening to a single talker

against a background of many is one notable instance. Yet human

imaging studies reveal that in such circumstances, the neural

representation of attended talkers is selectively enhanced relative to

that of unattended talkers, even at low SNRs [7,26,51]. While noise

tolerance appears to grow even stronger between core and belt AC

[7,8], this is likely to be attention-dependent [7,8,52–54]. Under-

standing how we create noise-tolerant representations of sound within

more complex mixtures is thus interwoven with questions of how we

segment these scenes, how we tag the components as ‘‘signal’’ and

‘‘noise,’’ and how we direct our attention accordingly.

In sum, our results provide a clear picture of a bottom-up

process that contributes to the emergence of noise-invariant

representations of natural sounds in the auditory brain. As

neurons’ adaptation to stimulus statistics gradually grows stronger

along the auditory pathway, populations of these neurons

progressively shift from encoding low-level physical attributes of

incoming sounds towards more mean-, contrast-, and noise-

independent information about stimulus identity. The result is a

major computational step towards the context-invariant, categor-

ical sound representations that are seen in higher areas of AC.

Materials and Methods

Animals and Physiology
All animal procedures were approved by the local ethical review

committee and performed under license from the UK Home

Office.

Extra-cellular recordings were performed in medetomidine/

ketamine-anesthetized ferrets. Previous work has shown that this

does not affect the contrast adaptation properties of cortical

neurons [10]. Full surgical procedures for cortical recordings

(primary auditory cortex and anterior auditory field), spike-sorting

routines, unit selection criteria, and sound presentation methods

(diotic, earphones, 48828 kHz sample rate) are provided in ref.

[12]. Surgery for IC recordings were performed as in ref. [55].

Recordings were made bilaterally in both locations.

The AN was simulated using the complete model of Zilany et al.

[27]. We generated spiking responses from 100 fibers at a 100 kHz

sample rate, with the same distribution of center frequencies (CFs)

and spontaneous rates (SRs) as in that paper (see section ‘‘AN

Model’’ below); n = 85 fibers were used based on reliably evoked

responses to the natural stimuli [10,12].

Stimuli
Four natural sound segments were presented (forest sounds,

rain, female speech, male speech sped up by 50%), with a

combined duration of 16 s, to 5 animals (IC, 2 animals, n = 80

units; AC, 3 animals, n = 124 units). For each sound, noise tokens

were synthesized with the same power spectrum and duration, and

mixed with the original source. The amplitudes of the source and

noise were scaled so that the SNR was 20 dB for the clean

condition, and 10/0/210 dB for the noisy conditions, with a fixed

root-mean-square (RMS) level of 80 dB SPL. The ‘‘clean’’

condition was therefore high-SNR, but not entirely noise-free;

this was necessary to keep its (log)-spectrogram bounded from

below at reasonable values. Fifty unique noise tokens were

generated for each sound and each SNR. All sounds included

5 ms cosine ramps at onset and offset. The set of stimuli were

presented in random order, interleaved with ,7 min of DRC

stimulation. DRCs were constructed from tones spaced at 1/6-

octave intervals from 500 Hz to 22.6 kHz; these changed in level

synchronously every 25 ms. Tone levels were drawn from uniform

distributions with a mean mL~40 dB SPL, and halfwidths of

wL [ f5,10,15,20g dB. Responses to these DRCs informed the

analysis in Figure 8B.

The analysis in Figure 5A–F was from DRCs presented to a

further 6 animals (IC, 3 animals, n = 136 units; AC, 3 animals,

n = 76 units); these procedures were as described in ref. [12]. Here,

tones were 1/4-octave spaced, and tone-level distributions had

mL~40 dB SPL and wL [ f5,15g dB. Approximately 30–60 min

of DRCs were presented during each penetration. Stimuli in

Figures S7 and S8 were presented to 2 animals (IC) and 4 animals

(AC).

AN Model
We simulated the AN using the phenomenological model of

Zilany et al. [27]. We chose the Zilany model because it captures

many physiological features of the AN responses to simple and

complex sounds, including middle-ear filtering, cochlear compres-

sion, and two-tone suppression. It does not explicitly model the

action of the olivocochlear bundle, such as the medial olivoco-

chlear reflex, which modulates cochlear gain during periods of

high-amplitude stimulation [56] and may therefore improve the

audibility of transient sounds, such as tones or vowels, in noise

[57,58]. However, it does capture the adaptation of AN responses

to the mean level of a sound as experimentally measured in the cat

AN [36,59].

We used the full AN model as provided in the authors’ code,

including the exact (rather than approximate) implementation of

power law adaptation. We simulated 100 AN fibers, using the

same distribution of CFs and SRs that the authors used in that

paper, based on previous physiological data [60]. Of the 100

fibers, 16 were low SR, 23 were medium SR, and 61 were high
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SR. For each SR, fibers had log-spaced CFs between 250 Hz and

20 kHz.

We ran three controls on this model. First, we tested whether

there was a difference in the results from low, medium, or high SR

fibers, and found little to no difference between the metrics

presented in the main text. Second, Zilany et al. present both an

exact and an approximate implementation of power law

adaptation; we therefore simulated both and found that the two

implementations produced very similar results.

Finally, the adaptation built into the model allows past

stimulation history to affect current responses. We therefore tested

whether the decoder results changed as we increased the length of

preceding stimulation. To do this, we simulated the stimulus

presentation sequences used during physiological recordings,

where natural sounds were played back-to-back (with a 100 ms

silence between sounds). The stimuli were presented in pseudo-

random order, as in physiology experiments. As the time and

memory complexity of the sAN simulation algorithm grows

exponentially with stimulus length, the longest sequences we were

able to present in reasonable time were four sounds (i.e., 16 s) in

duration. Next, we selected the responses to either the first, the

second, the third, or the fourth sound in each sequence. The first

set of responses were generated with 0 s of preceding stimulation;

these were discarded to avoid unstable initial behavior. We

considered each of the remaining sets of responses: the second set,

with an average of 4 s of preceding stimulation; the third, with an

average of 8 s; and the fourth, with an average of 12 s. Using this

schema, we simulated three entire sAN populations and calculated

the relevant decoder metrics for each. There was very little

difference between the values of the metrics in Figure 7D–E when

the amount of preceding stimulation was varied between 4 and

12 s. We were therefore confident that the simulated adaptation

had reached a steady state. Data in the main text are from the

fourth set of responses; these are simulated with an adaptation

‘‘memory’’ of 12 s of natural stimulation.

KL Divergence Calculation
To measure how the distributions of units’ responses changed

with the addition of noise (Figure 2B), we performed the following

analysis for each unit. We began with the trial-averaged, time-

varying firing rates evoked over the stimulus ensemble for each

SNR (yst, where s is SNR and t is time), at a 5 ms resolution. We

scaled these firing rates relative to the maximum firing rate

produced by that unit in the 20 dB SNR condition:

y�st~yst=max(y20,t). We then approximated the distributions

P(y�s ) for each SNR s, by binning y�s at a resolution (bin size) of

0.01, and using a maximum y� of 2 (enforced for consistency; no

y� ever exceeded this value). The counts in each bin were

augmented by a value of 0.5 (generally about 2%–10% of the

observed count; equivalent to using a weak Dirichlet prior with a

uniform base measure P(y�s )~const); this ensured that the results

remained finite. We then normalized the counts to have unitary

sum. Finally, we computed the Kullback–Leibler divergence

between P(y�20) and P(y�s ), with values shown in Figure 2B.

Noise Independence Calculation
To assess how the stimulus-conditioned responses depended on

the level of background noise, we calculated a mutual information

(MI)-based measure for each unit (Figure 2C). For each

background-noise condition (snr), we labeled the stimulus in each

time bin with an index, stim, using the same stim indices across

SNRs. We then calculated the (bias-corrected) MI between the

unit’s evoked response distributions, P(r), and the stim index,

I(r; stim), and the MI between P(r) and both the stim index and

the snr, I(r; stim, snr). Bias-corrections were performed by shuffling

labels [61]. The ratio between these respective quantities measures

the proportion of the response entropy that can be reduced by

knowing the stim index, as compared with knowing both the stim
index and the snr. If the responses are statistically independent of

the noise, then I(r; stim, snr) should equal I(r; stim), as knowing the

snr adds no further information. Consequently, a value of 1 means

that the response distribution contains information about the

underlying sound stimulus but not the level of background noise;

lower values mean that the information about the underlying sound

stimulus is more SNR-dependent.

Estimating Contrast-Dependent Gain Changes
To measure how the slope of units’ nonlinearities changed as

the contrast of the DRC stimuli changed (Figures 5D and 8B), we

used the following process. As described in the section ‘‘Stimuli’’

above, units in Figure 5D were stimulated with DRCs used in a

previous study [12]. We considered only data from the two

uniform contrast conditions in that study—that is, DRC segments

where all tone levels were drawn from a distribution with wL~5
dB (i.e., s~2:9 dB), or where all tone levels were drawn from a

distribution with wL~15 dB (s~8:7 dB). We fitted the following

nonlinearity to this dataset:

ŷyt~azb= 1z exp {
xt{c(s)

d(s)

� �� �
, ð1Þ

c(s)~c0zc1:s, ð2Þ

d(s)~d0zd1:s: ð3Þ

The reported values of Dslope are given as percentages; this is the

ratio:

Dslope~
d(wL~5){d(wL~15){1

3{1
|100%: ð4Þ

Thus 0% indicates no slope changes, and 100% indicates

perfect compensation for stimulus contrast. It is also possible under

this metric that Dslope can exceed 100%: this indicates that the

unit’s gain change was even stronger than was necessary to

compensate for the changes in contrast.

The units in Figure 8B were stimulated with a different set of

DRCs. These had tone-level distributions with half-widths drawn

from wL [ f5,10,15,20g dB (and s ! wL as above). We fitted the

same contrast-dependent nonlinearity as above (Equations 1–3).

Here, since a broader range of contrasts was used, the reported

values of Dslope are given as:

Dslope~
d(wL~5){d(wL~20){1

4{1
|100%: ð5Þ

There were no significant differences between the measures in

Equations 4 and 5.

Estimating Contrast-Dependent Changes in Coding
(Dlog infoð Þ)

As the contrast of DRC stimuli changed, units’ output

nonlinearities predominantly changed their gain (as in Figure 5B).
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Some units’ output nonlinearities also showed other adaptive shifts

(examples in Figure S2). To quantify the overall effect of contrast-

dependent changes to output nonlinearities, we constructed a

measure of how these adaptive shifts change the amount of

information a unit’s firing rate carries about the ongoing stimulus

(Figure 5F).

As above (see ‘‘Estimating Contrast-Dependent Gain Changes’’;

Figures 5D and 8B), we limited our analysis for each unit to data

from the two uniform contrast conditions. For each unit, we fitted

individual output nonlinearities for the two conditions (these are

the blue and red curves shown in Figure 5B and Figure S2A); we

denote these two curves as Flow and Fhigh, respectively:

ŷylow,t~Flow(xt)~alowzblow= 1zexp {
xt{clow

dlow

� �� �
, ð6Þ

ŷyhigh,t~Fhigh(xt)~ahighzbhigh= 1zexp {
xt{chigh

dhigh

� �� �
, ð7Þ

where xt is the STRF-filtered DRC for that unit. Unlike in the

previous section, these two nonlinearities were not constrained to

have the same values of a and b.

For sigmoidal F , and Poisson spiking, the Fisher information

conveyed by the unit about x is:

IF (x)~
(F ’(x))2

F(x)
~

b2 E2

d2(1zE)3 a(1zE)zb½ �
, ð8Þ

Where E~exp({(x{c)=d).

Using these equations, we estimated the expected IF over the

low contrast distribution of stimuli for both Flow and Fhigh. We

generated N~100,000 samples of x values from the low contrast

distribution (by filtering a long, low contrast DRC through the

STRF) and calculated the expectations Exlow
IFlow

(x)½ � and

Exlow
IFhigh

(x)
� �

over these samples. Finally, we defined:

Dinfo~log Exlow
IFlow

(x)
h i� 	

{log Exlow
IFhigh

(x)
h i� 	

, ð9Þ

where the logarithm removes the dependency on the maximum

firing rate. Thus, this measure estimates how much more Fisher

information a unit carries about low contrast stimuli when it is

adapted to low contrast stimulation, compared with when it is

adapted to high contrast stimulation.

Population Decoding
Log-amplitude spectrograms of natural sounds were computed

with 256 frequency bins (0.1–24 kHz) and downsampled to 5 ms

time resolution. Neuronal responses were binned at 5 ms

resolution to match the resolution of the spectrograms. Responses

to 40 randomly selected repeats of the clean sound were set aside

as a training set for the decoder.

We decoded the stimulus spectrogram from population

responses using a dictionary approach. We made the following

assumptions: (1) the responses of pairs of units, or of a given unit at

two different times, were conditionally independent given the

stimulus; (2) the expected firing rate of unit i in time bin t was a

function of the recent history of stimulation—that is, of the

spectrogram segment st~ St{19,f ,:::,St{h,f ,:::,Stf

� �
(where Stf is

the full sound spectrogram, f is frequency, and h is a history index,

covering 20 bins—i.e., 100 ms); and (3) the observed firing rate of

unit i at time t, rit, was the result of an inhomogeneous Poisson

process, with rit*Poiss(lit~gi(st)) for some function gi. Rather

than attempting to parameterize gi, we obtained maximum a

posteriori estimates of lit from the 40 repeats of the training data,

using a conjugate prior P(lit)~Gamma(1,1). This prior ensured

that lit was always greater than 0.024; if lit were allowed to drop

to 0, the decoder results would be skewed by units with very low

average firing rates.

Inference consisted of calculating, for each time bin t, the

posterior distribution over spectrogram segments st’, which could

have produced the responses in that bin. Because only 16 s of

unique training stimuli were presented (i.e., only approximately

3,200 spectrogram segments), the log posterior over this reduced

set of elements, log P(st ’Dritj)
� �

, could be fully computed from the

responses of each unit i, time bin t, and repeat j (via a uniform

prior over the presented st ’, assumption (3), and Bayes’ rule), and

then summed across units and repeats by assumption (1). A single

estimate of st was then produced from the posterior mean,

�sst~
X

t 0
st 0|P(st 0 jrt).

Finally, it was necessary to integrate the successive binwise

estimates of recent spectrogram history, �sst, into a single decoded

spectrogram, Rtf . This we achieved by convolution with a kernel:

Rtf ~
X

h
�SSt{h,f |kh. Given typical neural integration dynamics,

we used exponential kernels, kh!exp({h=t). Optimal t values

were found at 25/35/100 ms for sAN/IC/AC, by maximizing

SRclean, ScleanT as a function of t over a validation data set. The

choice of t nevertheless had very little impact on decoder metrics

(Figure S9).

Spectrograms were decoded from responses to the remaining 10

repeats of the clean sounds, as well as from responses to 10 repeats

from each of the noisy sound presentations.

To compare spectrograms R and S, we calculated the mean

square error (MSE) between the two, as

m(R, S)~
P

f ,t (Rtf {Stf )2. We scaled these values relative to a

‘‘prior MSE,’’ m(Rprior, S), where Rprior is the spectrogram

decoded from the prior distribution over st’, such that

Rprior,ft~Et’½St’f �Vt. The prior MSE gives the error when a

decoder has no neural responses to decode, so all stimuli in the

dictionary are equally likely. We defined the decoded spectrogram

similarity metric as SR, ST~100|½1{m(R, S)=m(Rprior, S)�.
As described in the main text, and in Figure 7A, the absolute

fidelity of these reconstructions, SR, ST, differed between sAN,

IC, and AC. Our interest was not, however, in these absolute

quantities, but rather in how the reconstruction fidelity changed

within a location when noise was added. We therefore calculated,

for each location, the degradation of reconstruction fidelity relative

to the low noise condition, via the normalized metrics,

SR, ST�~100|SR, ST=SRclean, ScleanT. This uses each low

noise condition as an internal control for each location. These

metrics were stable with population size (Figure S10).

Metrics could take negative values when reconstructions were

very poor; this occurred when MSEs were worse than the prior

MSE. For Figure 8B, sAN values of SR, ScleanT� were adjusted

for low BI: we removed the discrepancy between inferred

and actual spectrogram means via an adjusted MSE,

m’(R, S)~
X

f ,t
((Rtf {Stf ){Et ’f ’½Rt ’f ’{St ’f ’�)2. Unadjusted

data are shown in Figure S6.

Error bounds on similarity metrics were obtained by boot-

strapping. We subsampled units from the respective populations

50 times over and parameterized the bootstrapped statistics with

Gaussians.

Noise-Invariant Sound Representations

PLOS Biology | www.plosbiology.org 12 November 2013 | Volume 11 | Issue 11 | e1001710



Several features of this decoder are worth particular mention.

We assumed that neural responses were conditionally indepen-

dent given the stimulus. Note that this is not an assumption that

neurons are wholly independent of one another (e.g., that STRFs

did not overlap, or that signal correlations were 0), but rather that

trial-to-trial correlations were not relevant to stimulus coding (i.e.,

that noise correlations were 0). Thus, though we simultaneously

recorded an average of four neurons at a time per electrode

penetration, we grouped all nonsimultaneously recorded data

together, and discarded the trial labels. Although noise correla-

tions do exist among auditory neurons [62,63], to our knowledge,

there are few existing studies that successfully take this coordinated

variability into account to improve high-dimensional stimulus

reconstruction [43–45]. Here, we made the assumption of

conditional independence for two reasons: (1) since our AN model

had no correlated noise source, we wished to put the decoders

from the three locations on an equal footing; (2) more importantly,

ignoring noise correlations rendered inference far more tractable.

It is nevertheless likely that, using more sophisticated decoders,

absolute reconstruction fidelity would improve with noise corre-

lations taken into account [64]; this has been found to be the case

in recent decoding studies attempting stimulus categorization

[65,66]. In building such models for reconstruction, it would also

be important to address the empirical question as to how

correlations between auditory neurons change as background

noise is introduced into a sound [65,67].

Our decoder was trained on a limited set of signals, namely 40

repeats of 16 s of ‘‘clean’’ (20 dB SNR) sound stimulation. As a

result, the output of the decoder was restricted to convex

combinations of spectrogram segments from the training signals

(i.e., a dictionary). The decoder was therefore not a general-

purpose algorithm. Nevertheless, by design, the noisy spectro-

grams lay within the reconstruction space. In particular, decoding

with no information (or when the decoder rates each stimulus

segment as equally likely) produces the spectrogram of the added

noise.

It is worth emphasizing that the decoder therefore had implicit

knowledge of the clean signals’ inherent structure, via the

dictionary of spectrogram segments. In particular, this amounts

to a prior on the spectrogram correlations over a 100 ms history.

In general, incorporating such prior knowledge has been

demonstrated to improve the performance of spectrogram

reconstruction algorithms [43,44]; conversely, such a strong prior

as a dictionary reduces the ability to extrapolate to signals that lack

this structure. Our emphasis in this work, therefore, is not on the

gross performance of the decoder, but on how well its assumptions

about the respective populations’ encoding schemes remain robust

across noise conditions. In this respect, a high similarity between

Rnoisy and Snoisy indicates that a population encodes the noise in a

noisy stimulus much like the signal in the clean stimulus (which the

decoder is trained to decode). On the other hand, a high similarity

between Rnoisy and Sclean indicates that a population tends to

encode the sound features that are common between the clean and

noisy sounds.

Finally, it is an empirical question beyond the scope of this

article as to whether the decoded responses would maintain these

properties with more structured sources of background noise, or

those that lay outside the training set of the decoder.

Supporting Information

Figure S1 Increasing independence of response distri-
butions to background noise level cannot be explained
by increased modulation filtering. This figure shows a

simulated experiment designed to test whether the results in

Figure 2 could be explained by changes in the temporal

integration properties of neurons in the auditory pathway. We

constructed populations of model auditory neurons, simulated

their responses to the natural sounds presented in the main text,

and performed the same analysis as in Figure 2. The populations

were identical except for the parameter vc, defining the temporal

integration properties of the model neurons. Further details follow,

but in brief, (A) shows a general schematic for how the model

neurons process sound stimuli, (B) illustrates how vc affects input

signals in the model, and (C) is a direct analogue of Figure 2C,

using the model neurons. (A) Model of auditory neurons used in

the simulation. This comprises two stages. The first stage is a

simple model of cochlear filtering. We began with the pressure

waveforms of the natural sounds used in the main text. We

simulated frequency-selective cochlear channels by filtering the

sound waveforms through a gammatone filterbank. This was

implemented as a set of 50 IIR gammatone filters [68], using the

Brian simulator [69] in Python. Filter CFs were ERB-spaced

between 250 Hz and 20 kHz, as in ref. [70]. We next extracted the

amplitude envelope of each filter output, via the magnitude of the

Hilbert transform. We then applied a f (x)~x0:3 compressive

nonlinearity to envelopes to approximate the amplitude compres-

sion that occurs at the cochlea [71]. In the second stage, we

constructed populations of model auditory neurons, based on the

output of the 50 cochlear channels. Populations were defined by the

choice of a single parameter, vc, which characterizes the temporal

integration properties of the model neurons in each population. We

assumed that each auditory neuron within a model population

received input from only one peripheral channel. As a simple

approximation of how the modulation-following characteristics of

neurons change as one ascends the auditory pathway [1], we low-

pass filtered the inputs to these model neurons, using an 8th-order

Chebyshev Type I low-pass filter, with a cutoff frequency chosen

from either vc~760 Hz (to model AN neurons, denoted here as

mAN), vc~95 Hz (to model IC neurons, denoted here as mIC), or

vc~24 Hz (to model cortical neurons, denoted here as mAC).

Next, we passed the modulation-filtered input signal for each

neuron, xt, through a sigmoidal output nonlinearity. The output of

this stage was a time-varying firing rate, ŷyt, from which we

generated spike trains via an inhomogeneous Poisson process. Thus,

for each model location (defined by vc), we generated a set of spike

data of the same form as that used in the main text. The model used

here is equivalent to a linear-nonlinear-linear-nonlinear-Poisson

(LNLNP) forward model. The gammatone filters, Hilbert envelope,

and compressive nonlinearity cast the time-varying pressure signal

into a 50-dimensional time series via a LN process (the first LN of

the LNLN model). The second linear (L) stage was similar to that

used in a STRF model: each model neuron collapsed this high-

dimensional signal down to a one-dimensional time-series via a

convolution with a spectro-temporal kernel. We used simple kernels:

these were separable in frequency and time, sparse in the frequency

domain (the weight was nonzero for only one frequency channel),

and modulation low-pass in the time domain. The final nonlinear

(N) stage was provided by a point nonlinearity. (B) A 1.5 s segment

of xt, the ‘‘within-channel intensity’’ (i.e., STRF-filtered input

signal) of a model auditory neuron as described in (A). These were

produced from a cochlear filter with a CF of 1.3 kHz, together with

AN-, IC-, and AC-like modulation filtering as simulated from the

model in (A). These panels parallel Figure 3A, showing the within-

channel intensity from a clean (20 dB SNR) sound (lower lines in the

left panels), and that from a noisy (0 dB SNR) version of the same

sound (upper lines). The mAC neuron is more modulation low-pass;

fluctuations in sound intensity introduced by the noise have less
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energy for the mAC neuron than for the mAN fiber. (C) Statistical

independence of stimulus-conditioned response distributions

P(yDstim) to the background noise level, measured from the

populations of model neurons. This panel is a direct analogue of

Figure 2C. Median values of noise independence for mAN/mIC/

mAN were 0.80/0.80/0.83. Since the only factor that differentiates

the mAN, mIC, and mAC populations from each other is the

modulation cutoff frequency, vc, this estimates that increased

modulation filtering along the auditory pathway is responsible for

about a third of the effect observed in the measured data in

Figure 2C. The larger differences between auditory centers

observed in the main text could be obtained by simulating increased

m- and s-adaptation along the auditory pathway, as in Figure S5

(unpublished data).

(TIFF)

Figure S2 Further examples of adaptation to contrast,
as shown in Figure 5B–C. In addition to the general trend of

an increasing slope of the nonlinearity with contrast, some sAN

fibers (Examples 1 and 2) underwent small shifts in mean level at

lower contrast; greater effects were seen in some IC units

(Examples 4 and 5). Some IC units showed other contrast-

dependent changes to nonlinearities, including horizontal shifts

(Example 1) and changes in saturation points (Example 3). While

more complex models of contrast-dependent changes to non-

linearities were sometimes needed to characterize the behavior of

IC neurons (such as the more general classes of contrast kernel

models described in ref. [12]),changes in slope for IC units were,

overall, smaller than in cortex, but larger than in the sAN.

(TIFF)

Figure S3 Fitted time constants for gain control at
different levels of the auditory pathway. These time

constants were obtained using the same stimuli and procedure as

previously documented [12]. After a change in the spectral pattern

of contrast of a DRC, the gain of IC and cortical units’

nonlinearities changed with an approximately exponential time

course, with median time constants of 35 ms in IC and 117 ms in

AC. Contrast-dependent gain changes were generally weak or

nonexistent in the sAN, with estimated time constants being below

25 ms (and hence not detectable with this method). Pairwise

differences significant at pv10{5 (rank-sum tests).

(TIFF)

Figure S4 The more uniform coverage of frequency
space by the simulated AN population does not explain
the decoding results in the main text. (A) Histogram of best

frequencies of units in each location. (B, C) The more uniform

frequency coverage by the population of sAN fibers, compared

with that of the measured IC and cortical populations, could not

explain the differences in normalized decoder performance shown

in Figure 7D–E. Here, we halved the sAN population in size,

keeping only the simulated fibers with higher CFs (.2 kHz). This

produced near identical values of SR, ScleanT�{SR, SnoisyT� (B)

and SR, ScleanT� (C) to the full sAN population. While these

relative metrics remained unaffected, the absolute performance of

the decoder for the clean sound (SRclean, ScleanT) was lower for the

high-CF subpopulation than the full sAN population (not shown).

This is consistent with the trends shown in Figure 7A: since the

high-CF subpopulation contained only 42 simulated fibers (rather

than the full 85), there was less information available for inference.

However, SRclean, ScleanT for the high-CF subpopulation was

lower than that predicted by Figure 7A: subpopulations of 42

randomly selected fibers (i.e., with more uniform coverage of the

spectrum) yielded values of SRclean, ScleanT that were on average

10 percentage points higher than the high-CF subpopulation.

Thus we can conclude that the greater coverage of the frequency

spectrogram by the population of simulated AN fibers, compared

with that of the measured IC and cortical populations, contributes

to the better absolute decoder performance for the clean sound

(SRclean, ScleanT) in the sAN.

(TIFF)

Figure S5 Simulation of how both temporal integration
and adaptation affect the population encoding of
complex sounds, with and without background noise.
This figure shows simulated experiments designed to test whether

the results in Figure 7D and 7E could be explained by changes in

the temporal integration and/or adaptation properties of neurons

in the auditory pathway. As in Figure S1, we constructed

populations of model auditory neurons, simulated their responses

to the natural sounds presented in the main text, and performed

the same decoding analyses as in the main text. The simulation

was similar to that performed in Figure S1, and thus followed the

same schema as in Figure S1A. However, Figure S1 only

considered populations of neurons that differed in their temporal

integration properties. Here, we simulated populations that also

differed in the strength of their adaptation to stimulus statistics. We

constructed populations of model neurons that were identical to

each other, except for the value of three parameters: vc, defining

the temporal integration properties of the model neurons (as in the

simulations in Figure S1); ma, defining the strength of the model

neurons’ adaptation to the mean intensity; and sa, defining the

strength of the model neurons’ adaptation to the stimulus contrast.

Varying these parameters allowed us to test hypotheses about the

factors underlying the results in Figure 7D–E. For each

population, the values of ma and sa affected the operation of each

neuron’s sigmoidal output nonlinearity. The shapes of these output

nonlinearities were allowed to vary as a function of stimulus

statistics, in order to impart adaptation to the neuron. Thus, for

each model location (defined by vc), and each set of adaptation

parameters (ma and sa), we generated a set of spike data of the

same form as that used in the main text. Further details follow, but

in brief: (A) illustrates how ma and sa affect the output

nonlinearities of neurons in the model; (B) shows the results of

fitting these parameters to model populations under different

constraints, and compares the performance of the models

(symbols) directly with the observed data described in the main

text (histogram bars; cf., Figure 7D–E). (A) Adaptive output

nonlinearities used in the model. Neural responses were simulated

as in Figure S1A, except that each neuron’s output nonlinearities

was changed for each of the 16 presented stimuli (4 unique sounds

64 SNRs). The 363 grid of panels shows how different values of

the parameters ma and sa change the way a model neuron’s output

nonlinearities depend on stimulus statistics. The two lower panels

show stimulus statistics (as in Figure S1B) for two example sounds

(red and blue), and for the ensemble of all sounds presented. The

parameters ma and sa quantify the degree to which output

nonlinearities changed as a function of sound statistics (respec-

tively, as a function of the mean of the distribution of within-

channel intensities and of the standard deviation). We modeled

changes in the neurons’ stimulus–response relationships based on

observations from experiments using synthetic stimuli (Figures 5,

S5, S6, and S10; see also previous work in refs.

[9,10,12,20,36,72]). These data suggest that when the stimulus m
and s change, auditory neurons’ output nonlinearities undergo

compensatory shifts. This includes horizontal shifts due to changes

in mean level (Figures S7 and S8) and slope changes due to

changes in stimulus variance or contrast (Figures 5 and S2). While

other changes to neurons’ nonlinearities and/or spectral and

temporal integration properties may also change with stimulus
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statistics (e.g., refs. [9,16,20,36]), we focused here on these two

major effects. We used sigmoidal output nonlinearities for all

model neurons, of the form ŷyt~100= 1zexp {(xt{c)=d½ �ð Þ, with

a maximum firing rate of 100 spikes/s, a minimum of 0, an

inflection point at x~c, and a natural scale (i.e., inverse gain) of d.

The values of c and d depended on ma and sa, respectively. The

extent of m-adaptation (ma) was used to determine whether the

parameter c was the same for all 16 sounds (4 sound identities 64

SNRs; ma~0), or whether it differed across sounds (maw0).

Likewise, the extent of s-adaptation (sa) was used to determine the

extent to which d differed across sounds. Thus ma and sa

determined how the output nonlinearity changed from sound to

sound. Adaptive output nonlinearities for a given model neuron

were calculated as follows. We began by calculating the within-

channel intensities, x (as illustrated in Figure S1B), for each of the

16 sounds. We denote the distributions of within-channel

intensities for these 16 sounds as P(x 1ð Þ); …; P(x 16ð Þ), and the

distribution of within-channel intensities over the ensemble of all

the sounds as P(x Eð Þ). We denote the mean and standard

deviation of these distributions as m ið Þ and s ið Þ, respectively

(i [ 1, . . . , 16, Ef g). Three of these distributions for the mAC

neuron in (B) are illustrated in the bottom two panels of (C). In the

bottom-most panel, the gray area shows P(x ið Þ), the black dashed

vertical line shows m Eð Þ, and the thick black horizontal line shows

m Eð Þ+s Eð Þ. In the second bottom panel, red and blue areas (and

lines) show the respective distributions from two individual sounds

within the ensemble. For brevity, we refer to these two examples

here as the red and the blue sound. Next, the nonlinearity

parameters c and d were calculated for sound i as:

c ið Þ~m Eð Þ : 1{mað Þzm ið Þ : ma, ð10Þ

d ið Þ~s Eð Þ : 1{sað Þzs ið Þ : sa: ð11Þ

The top left grid panel in (A) shows the output nonlinearity for a

model neuron with no m- or s- adaptation—that is, ma~sa~0.

Here, c ið Þ~m Eð Þ and d(i)~s Eð Þ, which are both independent of i.
This model neuron thus has a fixed output nonlinearity (black line)

that is independent of stimulus statistics. Vertical dashed lines

show the means of the distributions P(x ið Þ) for the ensemble, red,

and blue sounds. This fixed output nonlinearity is shadowed in

gray for reference in the remaining eight panels in the grid. The

bottom left grid panel shows the output nonlinearities for the red

and blue sounds for a model neuron with 100% m-adaptation and

0% s-adaptation (i.e., ma = 1, sa = 0). This neuron has c ið Þ~m ið Þ,
so it adapts its coding for sound i so that the inflection point of its

nonlinearity is centered around m ið Þ. The top right grid panel

shows the output nonlinearities for the red and blue sounds for a

model neuron with 0% m-adaptation and 100% s-adaptation (i.e.,

ma = 0, sa = 1). This model neuron has d ið Þ~s ið Þ, so it adapts its

coding for sound i by changing its slope to match the width of

P(x ið Þ). The remaining grid panels show how other example values

of ma and sa affect output nonlinearities when coding the red and

blue sounds. Intermediate values of ma and sa yield only partial

adaptations of c and d to P(x ið Þ). In total, we simulated model

neurons with values of ma ranging from 0% to 100% in 5%

increments, and the same for sa; thus, this grid exemplifies only 9

of the 441 pairs of ma and sa values. (B) Our goal was to determine

the extent to which the three factors—differences in modulation

filtering (vc), adaptation to the stimulus mean level (ma), and

adaptation to the stimulus contrast (sa)—could account for the

observations presented in Figure 7D (the apparent shift from

representing Snoisy towards representing Sclean) and Figure 7E (the

increased noise-tolerance in decoding Sclean). To do so, we

determined the values of ma and sa for a model AN population

(vc = 750 Hz), a model IC population (vc = 95 Hz), and a model

AC population (vc = 24 Hz), which produced representations of

natural sounds best matched to the observations in Figure 7D–E.

We fitted ma and sa under five different sets of constraints (shown

here as separate rows), to test whether and how each of the three

parameters (vc, ma, and sa) contributed to these results. For each

experiment, the observed data from Figure 7D are shown as the

histogram bars in the middle column, and the observed data from

Figure 7E are shown as the histogram bars in the right column.

The symbols in these two columns show the values of these metrics

obtained from modeling. The left columns show fitted values of ma

and sa, as explained below. As these experiments required

extensive simulation, ma and sa were calculated to 5% precision.

We present five experiments here as separate rows. In the first

experiment, nonlinearities were fixed (i.e., there was no adaptation;

ma~sa~0). Here, mAN/mIC/mAC populations differed only by

their values of vc. In the second experiment, ma and sa were free to

vary, but were each constrained to be identical across the mAN,

mIC, and mAC populations (giving a model with two free

parameters). As in the first experiment, the three populations

differed only in vc. We allowed ma to vary between the three

populations in the third experiment (4 free parameters), sa to vary

between the three populations in the fourth experiment (4 free

parameters), and both to vary across location in the fifth experiment

(6 free parameters). In each case, we fitted the free parameters to

minimize the total squared error between the 18 data points in

Figure 7D and 7E (as obtained from IC and cortical recordings, and

from the full AN simulation), and the model populations’ values of

these metrics. These are shown in middle and right columns of each

row (histogram bars show observed values; symbols show model

values). The best fit values of ma and sa are shown in the left column.

First row, in the absence of adaptive coding, differences in

modulation tuning could not account for the Snoisy?Sclean shift,

nor the increased noise-tolerance of Sclean coding. These data do

show an important reference: in the absence of adaptation,

populations of auditory neurons would encode Snoisy rather than

Sclean (middle panel). Second row, in the presence of adaptive

coding, differences in modulation tuning partially contribute

towards increased noise-tolerance of Sclean encoding from periphery

to cortex, but are not sufficient to explain the Snoisy?Sclean shift.

Third row, allowing the strength of adaptation to stimulus mean (ma)

to take different values for the model AN, IC, and AC populations

was sufficient to explain the Snoisy?Sclean shift, but not the

increased noise-tolerance of Sclean encoding. Fourth row, allowing

the strength of adaptation to stimulus contrast (sa) to take different

values for the mAN, mIC, and mAC populations was sufficient to

explain the increased noise-tolerance of Sclean encoding, but not the

Snoisy?Sclean shift. Bottom row, allowing both the strength of

adaptation to stimulus mean and stimulus contrast to change for

each model population can explain the results observed in Figure 7D

and 7E. This analysis predicts that both the strength of adaptation to

the stimulus mean (ma) and the strength of adaptation to its contrast

(sa) should increase from the AN to the IC to the cortex.

(TIFF)

Figure S6 Adjusted SR, ScleanT� for sAN units in
Figure 8B. The results of Figure 8B show the relationship

between the strength of s-adaptation and the noise-tolerance of

Sclean encoding. However, SR, ScleanT� is also affected by BI

(Figure 8A). Because the sAN units had low BI (Figure 4B),
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decoding the responses of the sAN population to noisy sounds

produced spectrograms that included the noise present in Snoisy

but not Sclean (Figure 6); as a result, SR, ScleanT� was even lower

for the sAN. Therefore, to elucidate the relationship between s-

adaptation and the noise-tolerance of Sclean encoding, we

compensated for the low BI of sAN units in that figure. As

described in Materials and Methods, this involved using a

baseline-corrected similarity metric, which ignored the difference

in mean between the decoded and clean spectrograms. Here, we

show the effect of that compensation on SR, ScleanT�. Pluses show

the uncorrected metric for the sAN; stars show the corrected

metrics as in Figure 8B. The correction had little to no impact on

SR, ScleanT� for IC and cortical subpopulations; for the IC and AC

data points on this plot, the difference between corrected and

uncorrected metrics differed by an average of 0.5% (and hence are

not depicted).

(TIFF)

Figure S7 A separate set of experiments characterizing
adaptation to the mean stimulus intensity in sAN, IC,
and AC neurons. (A) Schematic of a LN model. In this

experiment, we probed auditory neurons using DRC stimuli. As in

the experiment presented in Figure 5, these were constructed as

superpositions of tones, whose time-varying levels, L, were drawn

from particular distributions (shown in B). The transformation of

the sound into a time-varying spike rate (ŷyt) is modeled as a two-

stage procedure: first, the sound spectrogram (Ltf ; top and bottom;

colors denote tone level) is filtered through a linear STRF. This

reduces the large dimensionality of the input space to a 1D time-

varying signal, xt. Second, this signal is passed through a sigmoidal

output nonlinearity, yielding the firing rate (ŷyt). (B) Statistics of the

DRCs were controlled by varying the distribution of tone levels,

P(L). In this set of experiments, the mean (m) of P(L) was varied

(cf., the experiment shown in Figure 5, where the width of P(L)
was varied). (C) For each unit, the distribution of STRF-filtered

DRCs, P(x), depends on the distributions P(L) shown in (B). (D)

Illustration of a fixed output nonlinearity for an idealized neuron

with no adaptation to the mean. The two colors show the portion

of the nonlinearity that would be explored by the stimulus

distributions shown in (B) and (C). (E) Illustration of two output

nonlinearities for an idealized neuron with complete (dynamic-

range) adaptation to the mean. This neuron no longer has a single

fixed output nonlinearity; rather, the nonlinearity is horizontally

shifted to cover the presented range of x values. (F) Data from

example units in each location. These show how output

nonlinearities change as the mean tone level (m) changed. STRFs

(insets) range from 0.5 kHz to 22.6 kHz on the frequency (f ) axis,

and are shown over only 100 ms of the 200 ms history (h) at 25 ms

resolution. Colors denote nonlinearities in different mean-level

conditions; corresponding distributions P(x) shown below. For the

example AN fiber, there is (approximately) a single output

nonlinearity that remains relatively unchanged as a function of

m; in the example IC and cortical units, output nonlinearities

undergo considerable horizontal shifts as a function of m. Further

examples shown in Figure S8. (G) Nonlinearities in (F), replotted as

a function of normalized z coordinates. m-adaptation induces a

shift away from the encoding of the unnormalized signal, x, in the

periphery, towards the encoding of the normalized signal, z, in IC

and cortex. (H) Histogram of the degree of m-adaptation in each

location. This was measured by fitting a single sigmoid for all the

output nonlinearities, with a m-dependent inflection point:

ŷyt~azb



1zexp {

xt{c mð Þ
d

� �� �
, ð12Þ

c mð Þ~c0zc1
: E x mð Þ½ �, ð13Þ

where is expectation over the distribution of STRF-filtered signals.

Here, c1 measures the horizontal displacement of the curve. A value

of 0% (c1~0) indicates an independent encoding of the unnorma-

lized variable, x. A value of 100% (c1~1) indicates complete

compensation for mean level. The median shift was 7% for the

simulated AN units (n = 85), 101% for the recorded IC units (n = 32),

and 100% for the cortical data (n = 287). The difference between IC

and AC was not significant (rank-sum test; p.0.5), but the differences

between AN and IC/AC were (p,1026). As these data were collected

from different units from the natural sound study described in the

main text, we could not compare the magnitude of the m-dependent

shift in output nonlinearities with the decoder metrics.

(TIFF)

Figure S8 Further examples of adaptation to mean tone
level, as shown in Figure S7F–G. (A) Output nonlinearities

for five example sAN fibers (left), five IC units (middle), and five

cortical units (right). Insets show units’ STRFs, as in Figure 5B. For

each example, top panel shows the fitted output nonlinearities for

DRCs presented at different mean levels. All DRCs were

constructed of pure tones; tones had levels drawn from a uniform

distribution with halfwidth wL~10 dB, and means of mL~20 dB

SPL (orange), mL~30 dB SPL (green), mL~40 dB SPL (blue), or

mL~50 dB SPL (purple). Three to four of these conditions were

usually presented for each unit; some IC units were only tested

with two mL conditions. Using the LN model shown in Figure S7A,

the DRC stimuli produced from each of these tone-level

distributions are filtered through units’ STRFs to produce time-

varying signals, xt. The statistics of x for each condition are a

function of the coefficients in the STRF. Thus, the distributions

P(xDm) vary from unit to unit in a number of ways. For example,

STRFs dominated by a single coefficient (e.g., sAN Example 4, IC

Example 1) have more uniform-like P(xDm), while STRFs with a

large number of nonzero coefficients are more Gaussian-like (e.g.,

most cortical units). Also, the net balance between excitatory (red)

and inhibitory (blue) coefficients of the STRF determine how

increasing m changes the mean of the distribution P(xDm). With

more excitation in the STRF (most examples), E½P(xDm)� increased

for largerm; with more inhibition, E½P(xDm)� decreased for larger m
(AC Examples 1, 4, and 5). In a small number of cases, excitation

and inhibition were approximately equal (AC Example 2), such

that P(xDm) did not change considerably with m. (B) Output

nonlinearities for the units in (A), replotted as a function of

normalized coefficients, z~(x{m), as in Figure S7G. As in

Figure 5B–C, output nonlinearities were generally independent of

m in the sAN, but changed considerably with mean level in the IC

and cortex. The trend was such that in these higher stages of the

pathway, responses were better described as a function of

normalized coefficients. While differences in the shape of

nonlinearities often arose in IC and cortex from changing m
(e.g., IC Example 5, AC Example 3), a simple horizontal shift in

nonlinearities usually described a major component of the m-

dependent changes.

(TIFF)

Figure S9 Differences in decoder performance were not
the result of the time constants used to reconstruct
spectrograms. As described in Materials and Methods, the

decoder constructs an estimate of the recent spectrogram history

for each 5 ms bin. In order to integrate these successive estimates

into a single decoded spectrogram, we convolved the set of

estimates with exponential kernels, kh ! exp({h=t), where
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t~25 ms for sAN, 35 ms for IC, and 100 ms for AC. Here,

similarity metrics as used in the main text are shown for values of t
ranging from 5 ms to 100 ms. As in Figure 7, shaded regions show

95% confidence intervals. Filled circles show the t values used in

the main text; these were chosen to maximize SRclean, ScleanT for

each location. However, values of t between 25 ms and 100 ms

produced very similar results for all locations.

(TIFF)

Figure S10 Stability of metrics with increasing popula-
tion size. In Figure 7A, we show that the values of the decoder

metric SRclean, ScleanT generally increased as more units were

included in the analysis. Here, we show how the normalized

metrics (A) SR, SnoisyT�, (B) SR, ScleanT�, and (C)

SR, ScleanT�{SR, SnoisyT� converged to stable values as the

number of units included in the analysis was increased. Thus,

the differences across location in the normalized decoder metrics

shown in Figure 7D–E are not the result of differences in the

absolute fidelity of the decoding.

(TIFF)

Table S1 Contributions of increasing BI and CI along
the auditory pathway to the results in Figure 8. In

Figure 8A, we demonstrate that the shift from Snoisy-representations

in the sAN population to Sclean-representations in the AC

population can largely be explained by an increase in neurons’ BI

along the auditory pathway. In Figure 8B, we demonstrate that the

increasing robustness of Sclean encoding can largely be explained by

an increase in neurons’ contrast invariance along the auditory

pathway. This table documents the statistics for these two figures (A

for Figure 8A; B for Figure 8B). The percentages shown quantify the

contributions of BI and CI toward explaining the differences

between the decoder metrics across locations. The values are

relative effect sizes within a general linear model. They were

calculated by fitting a set of multiple linear regression models

(ANCOVA) to (A) the data points in Figure 8A (where the decoder

metric is Y~SR, ScleanT�{SR, SnoisyT�) and (B) Figure 8B (where

the decoder metric is Y~SR, ScleanT�). The first row of the table

considers only the differences between sAN and IC data (for each of

A and B, n = 24 data points = 3 SNRs 6 4 subpopulations 6 2

locations); the second row considers only the differences between IC

and AC data (24 data points); while the third row considers the

differences across all three locations (36 data points). To calculate

relative effect sizes for (A), we fitted the following four linear models:

M0 : Y~asnr, ð14Þ

M1 : Y~asnrz bsnr|BIð Þ, ð15Þ

M2 : Y~asnrz bsnr|BIð Þz csnr|CIð Þ, ð16Þ

M3 : Y~dsnr,locz bsnr|BIð Þz csnr|CIð Þ, ð17Þ

where asnr, bsnr, csnr, and dsnr,loc are categorical variables. Model

M0 is the reference model; model M1 adds BI as an explanatory

variable, M2 adds CI, and M3 captures across-location differences

that remain unexplained by BI and CI. Denoting the residual

variance for model Mi as Vi, the relative effect size of BI was

calculated as (V0{V1)=(V0{V3). The relative effect size of CI was

calculated as (V1{V2)=(V0{V3). The unexplained portion was

calculated as (V2{V3)=(V0{V3). The procedure for calculating

relative effect sizes for (B) was identical, except the order of adding

BI and CI to the multiple linear regression model was reversed.

(PDF)
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