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Abstract

Stem cells and their niches constitute units that act cooperatively to achieve adult body homeostasis. How such units form
and whether stem cell and niche precursors might be coordinated already during organogenesis are unknown. In fruit flies,
primordial germ cells (PGCs), the precursors of germ line stem cells (GSCs), and somatic niche precursors develop within the
larval ovary. Together they form the 16–20 GSC units of the adult ovary. We show that ecdysone receptors are required to
coordinate the development of niche and GSC precursors. At early third instar, ecdysone receptors repress precocious
differentiation of both niches and PGCs. Early repression is required for correct morphogenesis of the ovary and for
protecting future GSCs from differentiation. At mid-third instar, ecdysone signaling is required for niche formation. Finally,
and concurrent with the initiation of wandering behavior, ecdysone signaling initiates PGC differentiation by allowing the
expression of the differentiation gene bag of marbles in PGCs that are not protected by the newly formed niches. All the
ovarian functions of ecdysone receptors are mediated through early repression, and late activation, of the ecdysone target
gene broad. These results show that, similar to mammals, a brain-gland-gonad axis controls the initiation of oogenesis in
insects. They further exemplify how a physiological cue coordinates the formation of a stem cell unit within an organ: it is
required for niche establishment and to ensure that precursor cells to adult stem cells remain undifferentiated until the
niches can accommodate them. Similar principles might govern the formation of additional stem cell units during
organogenesis.
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Introduction

Stem cells and their niches constitute functional units that

underlie adult organ homeostasis and regeneration following

injury or disease. Despite their great medical importance, little is

known about how stem cell units, which originate from precursor

cells, form during development. Understanding the relations

between stem cell precursors and niche precursors and uncovering

the molecular pathways that govern the behavior of these

populations are likely to enhance our potential to use stem cells

in cell-based therapies. Here we use the developing ovary of the

fruit fly Drosophila melanogaster as a model to investigate how the

formation of niches is coordinated with the development of their

resident stem cells.

The Drosophila ovary has been an influential model for

understanding the interactions between stem cells and their niches

[1,2]. Each fly ovary contains 16–20 units called ovarioles. At the

anterior of each ovariole lies a niche, which is composed of

Terminal Filament (TF) and Cap cells (Figure 1A,B). Niche cells

produce the ligand Decapentaplegic (Dpp, a BMP2/4 homo-

logue), which acts as a maintenance factor to 2–3 Germ Line Stem

Cells (GSCs) that are attached to the cap cells [3,4]. Dpp signaling

within GSCs is required to repress the major differentiation gene

bag of marbles (bam) [5,6]. When GSCs divide, one daughter cell

remains at the niche as a GSC. The second daughter, called a

cystoblast, is removed from the niche and initiates the differen-

tiation program by up-regulating bam. Germ cell differentiation

can be followed by the expression of bamP-GFP, a GFP reporter

construct that recapitulates Bam expression (Figure 1B) [7]. The

cystoblast divides four incomplete divisions to form a 2-, 4-, 8-, and

finally a 16-cell cyst. Cyst divisions are coordinated by the fusome,

an intracellular organelle that is round in GSCs and extended or

branched in germ line cysts (Figure 1A,B) [8,9].

While much is known about how the GSC unit functions in the

adult, how niche precursors and GSC precursors are controlled

prior to the formation of the adult GSC unit is less clear. At early

larval stages, both gonadal somatic cells (the precursors of niche

cells) and Primordial Germ Cells (PGCs, the precursors of GSCs)

proliferate. Somatic proliferation at this stage is required to allow

correct morphogenesis of 16–20 niches, while PGC proliferation is

required to generate sufficient GSC precursors that could occupy

the forming niches [10].

At mid third larval instar (ML3), TF differentiation initiates

(Figure 1C,D) [11]. TF specification continues throughout the late
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larval period, and by the late third larval instar (LL3), 16–20 TF

stacks have formed (Figure 1E,F) [11]. Cap cells form at the base

of TF stacks at LL3. Once TF and Cap cells form, PGCs can

attach to them via E-Cadherin, to become the adult GSCs [12].

Excess PGCs that are not attached to Cap cells are not

maintained, and differentiate to form the first germ line cysts

and egg chambers of the female [13]. While differentiating PGCs

express bam (Figure 1F), their fusomes are still round (Figure 1G,

arrowheads), indicating that they have not divided to form cysts

yet.

To maintain PGC proliferation throughout larval development,

their premature differentiation is actively repressed. Many of the

repressors of PGC differentiation are later required for GSC

maintenance; the translational repressors Nanos and Pumilio act

in a cell-autonomous manner to repress both PGC and GSC

differentiation [14–16]. In addition, the somatic cells of the ovary

express Dpp. Similar to GSCs, Dpp signaling within PGCs is

required for their maintenance [13,15,17]. Whether some aspects

of PGC maintenance are unique to the precursor cells has not

been established. In addition, since both niche and GSC

precursors pass through an initial proliferation stage, followed by

differentiation, it is unclear whether, or how, those two stages are

coordinated between the two populations of cells. Such coordina-

tion is required for correct ratios of niches and GSCs, as well as for

the correct maintenance of GSCs and their precursors.

In a screen that was designed to find novel regulators of niche

and PGC development, we found that target genes of the ecdysone

pathway affected PGC maintenance. Ecdysone is a steroid

hormone that controls many aspects of larval development, which

include temporal control of molting as well as regulating cell fate

specification and organ morphogenesis [18,19]. Ecdysone pro-

duction in the prothoracic gland is regulated by the brain-derived

neuropeptide Prothoracicotropic Hormone (PTTH) [20]. This

brain-gland connection is reminiscent of the Hypothalamus-

Pituitary link in mammals, which is connected to the gonad in a

Hypothalamus-Pituitary-Gonadal (HPG) axis. The HPG axis and

hormonal regulation play a major role in the initiation of adult

reproduction in mammals. No role for the steroid hormone

ecdysone has been suggested in the initiation of oogenesis in flies.

However, recent reports demonstrated that ecdysone signaling is

required cell autonomously within adult GSCs for their mainte-

nance and non-cell-autonomously within Escort Cells (the somatic

cells that contact early germ line cysts, Figure 1A) for correct

differentiation of adult GSC daughter cells [21,22].

We demonstrate that in the fly, a brain-gland-gonad axis exists,

and that ecdysone receptors regulate GSC and niche formation. In

the first, proliferative, stage of gonadogenesis, ecdysone receptors

are required to repress precocious PGC and niche precursor cell

differentiation. Later, ecdysone signaling is required for niche

differentiation. Finally somatic ecdysone signaling is required to

initiate fly oogenesis in a non-autonomous manner. Combined,

ecdysone receptors orchestrate the entire sequence of the

formation of the GSC unit in the ovary. Other stem cell units

might similarly be organized during development.

Results

Repression of Precocious Ovarian Development by
Ecdysone Receptors

To uncover molecular events that underlie niche formation,

PGC maintenance, or their coordination, we performed an over-

expression screen in larval ovaries (Supporting Information). The

driver line traffic jam-Gal4 (tj-Gal4), which is expressed in the

somatic cells of the ovary, but not in PGCs (Figure 1G), was used

to generate non-autonomous effects in PGCs. Such effects require

large populations of affected somatic cells and might have been

undetected by clonal analysis screens.

Over-expression of two nuclear hormone receptors, Eip75B

(Figure 1H) and to a lesser extent Ftz-f1 (unpublished data), in the

somatic cells of the ovary resulted in precocious PGC differen-

tiation. In contrast to wild-type ovaries, which contain spherical

fusomes (Figure 1G, arrowheads), LL3 ovaries over-expressing

Eip75B contained branched fusomes, indicating that PGCs

differentiated precociously into germ line cysts (Figure 1H,

arrowheads). Eip75B and Ftz-f1 are target genes in the ecdysone

response cascade, which times various events throughout

embryonic, larval, and pupal life [18,19]. This cascade initiates

when the hormone ecdysone binds to two nuclear receptors:

Ecdysone Receptor (EcR) and Ultraspiracle (Usp). Following

activation of the EcR/Usp heterodimer, a gene expression

program is initiated. Many of the central target genes of this

cascade (including ftz-F1, Eip75B and broad) encode transcription

factors or nuclear receptors and are common to many tissues.

The tissue-specific targets of this signaling pathway are not well

characterized.

To test whether precocious PGC differentiation resulted from a

change in ecdysone signaling, RNAi constructs against EcR or

Usp were expressed using tj-Gal4. The ovary-specific expression

(henceforth termed ‘‘somatic expression’’) did not change the

timing of the various molting stages, pupation, and hatching.

However, extensive differentiation of PGCs was observed in

gonads of EcR or usp RNAi animals (Figure 1I,J, arrowheads).

While only 2% of control tj.lacZ ovaries contained branched

fusomes (N = 37), 100% of either tj.EcR or usp RNAi ovaries

harbored germ line cysts with branched fusomes (N = 77 and

N = 17, respectively). Somatic expression of different RNAi lines

against EcR and usp all resulted in PGC differentiation (Experi-

mental Procedures).

Recently, ecdysone signaling was shown to maintain adult

GSCs in a cell-autonomous manner. To test whether EcR and

Author Summary

Tissue-specific stem cells reside in specialized microenvi-
ronments (niches). How the generation of niche cells and
resident stem cells is coordinated, and how their correct
numerical ratios are regulated, remains poorly understood.
Here, we examine the potential mechanisms of this
process by analyzing the formation of the fly ovary.
Specifically, we uncover a role for ecdysone, which is a
steroid hormone renowned for its role in insect molting
but that also controls many aspects of larval development
in flies and mammals. We find that ecdysone signaling in
fly larvae coordinates the development of niche cells
relative to their resident germ line stem cells (GSCs).
Ecdysone receptors initially serve as repressors of differ-
entiation, allowing precursor cells of both niches and GSCs
time to proliferate and attain correct cell numbers. Later,
ecdysone receptors allow differentiation of niches while
simultaneously maintaining GSC precursors in an undiffer-
entiated state, until the newly formed niches can
accommodate them. Finally, ecdysone induces the differ-
entiation of GSC precursors that are not incorporated in
niches. Our work exemplifies one possible solution to
coordinating stem cell and niche development: using a
common signal to affect both cell types. A further
understanding of these and other mechanisms will offer
novel insights into regeneration and could help guide cell-
based therapies for various diseases.

Coordinated Formation of Stem Cells and Niches
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Usp or their target genes might repress PGC differentiation cell-

autonomously, we removed ecdysone signaling components

specifically from PGCs. No precocious PGC differentiation was

observed when RNAi constructs against EcR and usp, or a

dominant-negative isoform of EcRA (EcRA.W650A, [23]), were

expressed using the germ-line-specific driver nos-Gal4. Nor was

PGC differentiation observed in PGCs mutant for usp, Eip75B,

Eip74EF, or ftz-f1 (Figure S1). Broad-mutant ovaries also lacked

germ line cysts (see below). Thus, during larval stages, ecdysone

receptors in the somatic cells of the ovary are required non-

autonomously to repress precocious PGC differentiation.

In addition to precocious PGC differentiation, precocious niche

differentiation also occurred in EcR and usp RNAi ovaries. In wild-

type ML3 ovaries, only few cells express the TF markers hedgehog-

LacZ (hh-lacZ) and Engrailed (En). These cells are still unorga-

nized, and very few short filaments can be detected at this stage

(Figure 2A,B, Table 1). In contrast, removal of EcR or usp from the

somatic cells of the ovary by RNAi resulted in more TF cells,

which were already organized into filaments by ML3 (Figure 2C,D,

arrows, Table 1).

To test whether all aspects of niche formation were precocious,

we examined Cap cells, which appear at the larval-pupal transition

stage at the posterior base of TFs [24]. Cap cells contain nuclei

that are rounder than TF nuclei and also stain with hh-lacZ

(Figure 2E, arrowheads). These cells also stain with anti-Tj

antibody, which at LL3 stains the Intermingled Cells (ICs, the cells

that directly contact PGCs [10,25]), indicating that cap cells may

originate from anterior ICs (Figure 2F, inset, arrowheads). In EcR

(Figure 2G, arrowheads) and usp RNAi (unpublished data) ovaries,

cells with cap cell morphology, which were labeled by hh-LacZ,

appeared at the base of precocious TFs already at ML3. Thus, the

development of the entire stem cell niche is precocious when either

EcR or Usp are removed from the somatic cells of the ovary.

Despite the precocious formation of cap cells in EcR and Usp-

RNAi ovaries, we could not observe extra cap cells during larval

stages, as has recently been proposed [22]. However, it is possible

that increased ecdysone signaling affects cap cell number during

pupal or adult stages (Figure S2, Text S1).

Figure 1. Ecdysone receptors repress precocious PGC differ-
entiation. (A) An illustration of an adult germarium. Niche cells
(Terminal Filament, TF, and Cap cells) are at the anterior (magenta).
Attached to cap cells are the Germ Line Stem Cells (GSCs, blue). GSC
progeny (Cystoblast, Cb; and cysts, green) are posterior to GSCs. GSCs
and Cbs carry a round fusome (yellow), while germ line cysts carry a
branched fusome. Germ cells are also contacted by somatic Escort Cells
(ECs, purple). (B) Adult germarium. TF and cap cells (barbed
arrowheads) are marked by hedgehog-lacZ (anti b-Galactosidase, red).
GSCs (outlined) are attached to cap cells. Fusomes within GSCs are

labeled by monoclonal antibody 1B1 (magenta) and are round (arrows).
Posterior to GSCs, differentiating germ cells are expressing bamP-GFP
(green). Fusomes within germ line cysts are extended or branched
(arrowheads). (C) An illustration of a larval ovary at mid-3rd instar (ML3).
TF cells (magenta) are only beginning to form. Primordial germ cells
(PGCs, green) are more posterior. Intermingled Cells (ICs, purple) are
associated with PGCs. (D) An ML3 ovary. Terminal filament cells are
labeled by anti-Engrailed (En, magenta). Few En expressing cells are
present in very short filaments (arrows). Differentiating PGCs are labeled
by bamP-GFP (anti-GFP, green). PGCs have not yet differentiated, and
cannot be recognized by anti-GFP; their location is indicated by white
circles. (E) An illustration of a late 3rd (LL3) ovary. Somatic niches (TF,
Cap cells, magenta) are marked. GSCs (blue) are established close to TF
and Cap cells. Away from niches, PGCs initiate differentiation and some
have turned to cystoblasts (dark green). (F) An LL3 ovary. TF stacks and
cap cells, marked by anti-En (magenta, arrows), are formed throughout
the anterior of the ovary. Many PGCs that are not close to the niches are
expressing bamP-GFP (anti-GFP, green). PGCs that become GSCs are
close to niches. They do not express bamP-GFP and their location is
indicated by white circles. (G–J) LL3 ovaries, all labeled by 1B1 antibody
to outline somatic cells and fusomes within PGCs (magenta). (G) The
somatic driver tj-Gal4 drives GFP expression (anti-GFP, green) in somatic
cells, but not in PGCs (some PGCs are outlined, inset). PGCs in wild-type
LL3 ovaries carry round fusomes (inset, arrowheads). (H–J) PGCs are
labeled by anti-Vasa (green). Somatic expression of Eip75B (H) or RNAi
construct against usp (I) or RNAi construct against EcR (J) results in
formation of multiple cysts harboring branched fusomes (arrowheads,
insets). Bars in panel (B), (D), and (F) (for F–J) are 10 mm. Anterior is up.
doi:10.1371/journal.pbio.1001202.g001

Coordinated Formation of Stem Cells and Niches

PLoS Biology | www.plosbiology.org 3 November 2011 | Volume 9 | Issue 11 | e1001202



Precocious niche development resulted in disorganization of the

anterior part of the ovary. In the wild type, niches are formed as

well organized TF stacks, which are regularly spaced throughout

the anterior part of the LL3 ovary (Figure 2H). In EcR (Figure 2I)

or usp RNAi ovaries (unpublished data), TF stacks formed, but

some stacks were not positioned correctly from anterior to

posterior. In addition, less non-TF cells were present between

stacks and anterior to them (Figure 2I). Since TF and cap cells are

post-mitotic, we suggest that their precocious differentiation at the

expense of the proliferating precursors caused the reduction in

anterior size and resulted in morphogenesis defects.

Despite their spatial disorder, niches had all their cellular

components; we therefore tested whether the precocious niches in

EcR and usp RNAi ovaries were functional. Wild type niches

secrete Dpp, which results in phosphorylation of Mothers Against

Dpp (pMAD, a SMAD homologue) within germ cells that are

attached to them. We used immunofluorescence labeling to

compare the level of pMAD in PGCs that were close to forming

niches in wild type and in EcR-RNAi LL3 ovaries. In accord with

the normal, albeit early, sequence of niche development, similar

levels of pMad were observed in both cases in anterior PGCs that

were close to niches (Table 2). Indeed, in EcR and usp RNAi

ovaries, precocious PGC differentiation occurred only in posterior

PGCs located away from the niches (Figure 1I,J).

Taken together, these data show that removing ecdysone

receptors from the somatic cells of the ovary leads to precocious

differentiation of both niches and PGCs. Forming niches are

functional and protect PGCs that attach to them from differen-

tiation. However, the organization of the anterior of the ovary is

defective due to precocious precursor differentiation.

Ecdysone Receptors Are Early Repressors and Late
Activators of broad Expression

To understand how ecdysone receptors repress precocious niche

formation and PGC differentiation, we examined the expression of

ecdysone receptors and of the transcription factor Broad, an

important target of the pathway. Antibodies directed against EcR-

A weakly stained all somatic nuclei in mid and late third instar.

Figure 2. Ecdysone receptors repress precocious niche formation. (A, B) Terminal filaments of wild-type ML3 ovaries are labeled either by hh-
lacZ (A, green) or anti-En (B, magenta). Few TF cells which are unorganized, or organized into short filaments, can be seen. Germ cells are marked by
round fusomes (A, 1B1 antibody, magenta) or by anti-Vasa (B, green). (C, D) In EcR-RNAi (C) or usp-RNAi (D) ML3 ovaries, more TF cells and more
organized filaments can be seen (anti-En, magenta, arrows). Germ cells are labeled by anti-Vasa (green). (E–I) hh-lacZ (green) marks all TF and cap
cells. (E) In WT LL3 ovaries TF cells are distinguished by hh-lacZ staining and oval-shaped nuclei. LaminC (red) is only apparent in older TF cells, at the
anterior of each TF stack. Cap cells (arrowheads) are at the posterior base of TF, have rounder nuclei, and do not yet stain with anti-laminC. (F) Anti-Tj
(magenta) labels ICs. Cap cells that form at the base of TFs are co-stained with hh-LacZ and anti-Tj (inset, arrowheads). (G) EcR-RNAi ML3 ovaries.
Unlike wild-type, Cap cells appear already at ML3 (arrowheads). (H, I) Somatic cells and fusomes are labeled by 1B1 (magenta). (H) TFs are regularly
spaced in the anterior half of the wild-type ovary. (I) In EcR-RNAi LL3 ovaries, TFs are mis-positioned, with fewer cells between stacks. Bars in (A), (for
A–D), in E (for E, G), and in H (for F, H, I) are 10 mm.
doi:10.1371/journal.pbio.1001202.g002
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EcR-B1 was detected in all somatic nuclei during third instar. As

expected, no EcR staining was observed within PGCs (Figure S3).

This finding is in accord with the somatic expression of Usp in

larval ovaries [26].

The broad locus encodes four different transcripts: broad-Z1, Z2,

Z3, and Z4 [27]. An antibody directed against the common region

of all Broad isoforms exclusively stained somatic cell nuclei.

Staining levels increased as ovaries matured (Figure 3A,B,C). One

reason for this increase might be the difference observed in the

expression of Broad-Z1. Staining with anti-Br-Z1 revealed that

this isoform was not expressed until ML3. At ML3 very faint Br-

Z1 staining could be observed (Figure 3D), and by LL3 it was

strongly expressed in all somatic nuclei (Figure 3E). In contrast,

Br-Z1 expression was clearly detected already at ML3 in EcR or

usp RNAi ovaries (Figure 3F,G), suggesting that ecdysone receptors

repress early expression of Br-Z1. Significantly, precocious

expression was particularly noted in the ICs (Figure 3F,G,

arrowheads), which contact PGCs [10,25].

Inhibition of Br-Z1 expression by EcR was previously observed

in imaginal discs [28]. It was suggested that, in analogy to several

mammalian nuclear hormone receptors, EcR and Usp have a dual

role: in the absence of ecdysone or when associated with co-

repressors, these receptors function as repressors of ecdysone target

genes, while in the presence of ecdysone or specific co-activators

they promote or have a permissive role in target gene activation

[28–30]. To test this hypothesis, we used a dominant negative

isoform of EcR-A, which cannot bind ligand, and serves as a

constant repressor [23]. Indeed, Br-Z1 was not expressed, or

expressed in very few cells, in LL3 ovaries expressing the dominant

negative EcRA.W650A (compare Figure 3H to 3E). These results

demonstrate that EcR and Usp act as early repressors of Br-Z1

and that ecdysone signaling is later required for Br-Z1 expression.

Anti-Br-C staining was still observed in EcRA.W650A ovaries

(Figure 3I), suggesting that Broad Complex is affected by, but not

entirely dependent on, ecdysone signaling [31].

Ecdysone Signaling and Broad Are Required for Niche
Formation and PGC Differentiation

Our results suggest that at early third instar, EcR/Usp mediated

repression of Br-Z1 expression delays niche and PGC differenti-

ation, while at late third instar, activation of the ecdysone pathway

may promote these events by allowing Broad-Z1 expression. To

test this hypothesis and determine the role of active ecdysone

signaling and Broad expression in the ovary, we expressed the

dominant negative form of each of the three EcR isoforms in the

somatic cells of the ovary. The dominant negative form

EcRA.W650A produced the strongest phenotypes (Figure 4A,

Figure S4). EcRA.W650A ovaries were markedly smaller as

compared to wild type (100% of the ovaries, N = 50, Figure 4A,

compare to Figure 1G). Very few TF cells, which were not

organized into long stacks, were observed in these ovaries

(Figure 4B). It has been previously shown that Notch activation

is required for cap cell formation [24,32]. Indeed, expression of the

intracellular portion of Notch in somatic cells markedly increased

the number of cap cells forming in wild-type ovaries at LL3

(Figure 4C, arrowheads, N = 21). However, cap cells were not

induced by Notch activation in EcRA.W650A ovaries (Figure 4D,

N = 11), suggesting that somatic ecdysone signaling is required to

allow Notch-mediated cap cell formation.

The absence of niches in EcRA.W650A ovaries could result

from a general developmental arrest, or from a particular problem

in niche formation. We therefore tested whether some aspects of

gonad morphogenesis did occur properly in EcRA.W650A

ovaries. In wild-type ovaries, all somatic cells express the protein

Traffic Jam (Tj) until ML3. At this stage the expression of Tj is

being limited to ICs [10,25]. By LL3, only ICs, which intermingle

with germ cells, express Tj at high levels (Figure 4E, arrowheads).

In EcRA.W650A LL3 ovaries, we found Tj-positive cells in the

vicinity of PGCs. These cells failed to intermingle with germ cells

(Figure 4F, arrowheads). Significantly, the anterior of the ovary

was devoid of Tj protein at this stage, indicating that clearance of

Tj from the anterior occurred normally. The fact that not all

aspects of ovarian maturation were arrested in EcRA.W650A

suggests that ecdysone signaling has a more specific role in niche

formation. Indeed, mosaic analysis revealed that less TFs formed

in ovaries bearing large mutant clones of Eip75B and Ftz-f1,

despite an otherwise normal ovarian development (Table 1).

Table 1. Effects of ecdysone signaling components on TF
formation.

Average TF
Number SD N t Test

UAS-LacZ ML3 1.8 2.15 41

usp-RNAi ML3 11.29 3.72 28 1.26E-20

EcR-RNAi ML3 9.35 4.93 27 1.67E-13

Br-Z1 ML3 ND ND ND ND

Br-Z2 ML3 6.8 1.6 22 1.17E-13

Br-Z3 ML3 6.8 2.2 22 2.39E-12

Br-Z4 ML3 2.8 1.9 24 0.058

LacZ LL3 17.5 2.8 39

Eip75B LL3 13.8 3.5 13 0.000363

ftz-f1 LL3 14.7 2.88 20 0.000857

At ML3, TFs were stained with anti-En, confocal Z-stacks were acquired, and the
number of TF stacks in ovaries of each genotype counted. An average of about
two short TF stacks could be observed in wild-type ovaries. Precocious
activation of the ecdysone signaling cascade either by removal of EcR or usp by
RNAi from the somatic cells of the ovary, or by mis-expression of Br-Z2 and Br-
Z3, results in more TF stacks at ML3. Very little change in TF stacks is caused by
mis-expression of Br-Z4. ND: In Br-Z1 ovaries we cannot quantify TF stacks, since
the anterior of the ovary is mis-organized and individual TF stacks are hard to
distinguish. However, more TF cells are observed in Br-Z1 ovaries (Figure 5B). At
LL3, TF stacks were observed using 1B1 labeling. On average, 17 or 18 TFs are
formed in wild type ovaries. When large mutant clones of Eip75B07401 or ftz-
f103649 are generated using C587-Gal4, UAS-Flp, less TF stacks form.
doi:10.1371/journal.pbio.1001202.t001

Table 2. Effects of abrogation of ecdysone signaling on niche
function.

pMAD Intensity SD
#PGCs
(#ovaries) t Test

UAS-LacZ 65.5 11.4 348 (11)

EcR-RNAi 62.6 6.18 397 (16) 0.49

EcRA.W650A 46.3 3.5 267 (15) 2.7E-5

LL3 ovaries were stained with anti-pMAD antibody and scanned in a confocal
microscope. Identical settings were used for all ovaries. Intensity levels of pMAD
labeling in PGCs that are close to the forming niches were analyzed using the
Image J program. No change in pMAD labeling of EcR-RNAi ovaries as
compared to WT could be observed, indicating that the early forming niches in
EcR-RNAi ovaries are fully functional. pMAD levels in EcRA.W650A germ cells
were reduced, reflecting the general reduced ovarian size, and reduced
amounts of niche cells, which produce Dpp.
doi:10.1371/journal.pbio.1001202.t002
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Their smaller size prompted us to investigate cell proliferation

and cell death in EcRA.W650A ovaries. No cell death above

wild-type background could be observed (only 0–4 dying cells are

observed in WT, br-RNAi, or EcRA.W650A ML3 ovaries;

N = 30, 26, and 42 ovaries, respectively). However, cell

proliferation was significantly reduced in br-RNAi and

EcRA.W650A ML3 ovaries. In LacZ control ovaries, an average

of 17.11 cells were labeled with anti-phospho Histone H3, a

mitotic marker (SD = 6.99, N = 35). Significantly less cells were in

mitosis in EcRA.W650A (average of 8.8 cells, SD = 3.47, N = 35, t

test p = 2.53E-8) or br-RNAi (average 14.2 cells, SD = 4.12,

N = 50, t test p = 0.017).

To distinguish between a primary requirement for ecdysone

signaling in cell proliferation or in cell differentiation, we forced

somatic cells of EcRA.W650A ovaries to proliferate by over-

expression of the Insulin receptor (InR). Wild-type ovaries over-

expressing InR are larger in size, but their niches are normally

patterned (Figure 4G, arrows). In EcRA.W650A ovaries that also

expressed InR, ovarian size was similar to that of wild type,

indicating that Insulin signaling can overcome the proliferation

defect arising from disrupted ecdysone signaling. However, similar

to EcRA.W650A, very few TF cells were observed, which were not

organized in filaments (compare Figure 4H arrows to 4B and to

wild type, Figure 2H). Together with the advanced formation of

niches in EcR and usp RNAi ovaries, these results indicate that

ecdysone signaling is required for differentiation of somatic niche

cells. In addition, ecdysone signaling may also contribute to

somatic cell proliferation [33].

As expected, br-RNAi phenotypes were similar to

EcRA.W650A in nature but were weaker. br -RNAi ovaries were

smaller than wild type and had no TFs, or shorter TFs than wild

type (100% of the ovaries, N = 25, compare Figure 4I to

Figure 2H). Similar phenotypes were observed in ovaries from

br1 (Figure 4J) or br5 (unpublished data) mutant animals, in which

Br-Z2 function is removed (100% of ovaries, N = 28 for br1 and

N = 35 for br5). Importantly, precocious niche formation and PGC

differentiation could not be observed in EcR RNAi ovaries that

also lacked broad. PGCs in such ovaries contained spherical

fusomes and TFs were shorter than wild type (Figure 4K,L),

suggesting that Broad is an essential component in ecdysone-

mediated control of ovarian morphogenesis.

Our results suggest that removal of broad leads to retarded

ovarian morphogenesis, while its precocious expression in EcR or

usp RNAi ovaries might lead to advanced morphogenesis and to

Figure 3. Somatic ecdysone receptors are early repressors and late activators of Broad-Z1. In all panels, germ cells are labeled with anti-
Vasa (green). Panels (A–C) were taken with the same confocal settings. Antibodies against the common region of Broad (Broad-C, magenta) stain
somatic cell nuclei of LL2 (A), ML3 (B), and LL3 (C) ovaries. Staining levels become stronger with time. Panels (D–G) were taken with the same confocal
settings. Broad-Z1 (magenta) is very weakly expressed in wild type ML3 ovaries (D), but is strongly expressed at LL3 (E). In contrast to wild type, Br-Z1
is expressed in ICs (arrowheads) of EcR-RNAi (F) and usp-RNAi (G) ML3 ovaries. (H) Broad-Z1 (magenta) is not expressed in most somatic cells of
EcRA.W650A ovaries. (I) In contrast, anti-Br-C does label somatic cells of EcRA.W650A ovaries. Bars in (A), in (B) (for B, D, F, G), and in (C) (C, E, H, I) are
10 mm.
doi:10.1371/journal.pbio.1001202.g003
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PGC differentiation. To test this directly we over-expressed each

of the Broad isoforms in the somatic cells of the ovary. Niche cells

were labeled by anti-Engrailed (En) and PGC differentiation was

monitored using the reporter bamP-GFP [7]. Over-expression of all

Broad isoforms led to precocious bamP-GFP expression at ML3

(100% of the ovaries, N = 20, 29, 30, and 29 for Br-Z1, Z2, Z3,

and Z4, respectively; compare Figure 5A to 5B for Br-Z1, 5C for

Br-Z4. Br-Z2, Br-Z3 not shown). Since PGC differentiation was so

robust in Broad over-expressing ovaries, we tested the extent to

which it could reach. In wild-type adult germaria, Orb is expressed

in 8- and 16-cell cysts. When one cell of the 16 is chosen as an

oocyte, Orb localizes in this cell (Figure 5D, arrowheads) [34]. As

expected, anti-Orb staining of wild type LL3 ovaries revealed no

Orb labeling (Figure 5E). However, in Br-Z1 (Figure 5F), Br-Z2,

and Br-Z4 (unpublished data) over-expressing ovaries, Orb

labeling could clearly be seen. Some cysts already localized Orb

into one cell (Figure 5F, arrowheads), indicating that PGC

differentiation was advanced and could reach the oocyte

determination stage.

TFs also formed precociously following Broad over-expression

(compare Figure 5A to Figure 5B, Table 1). Interestingly, while Br-

Z1, Z2, and Z3 expression resulted in both precocious TF and

PGC differentiation, Br-Z4 over-expression caused only PGC

differentiation, but no change in TFs (compare Figure 5A to 5C,

Table 1). These results further implicate Broad as a major effector

of ovarian morphogenesis, and in particular of niche formation

and PGC differentiation.

Somatic Ecdysone Signaling Affects the Major GSC
Maintenance Pathway

To define how somatic ecdysone signaling might induce PGC

differentiation, we analyzed its effects on the major germ cell

maintenance/differentiation pathway. Similar to GSC mainte-

nance, all PGCs at early larval stages are maintained by Dpp

signaling [3,15,17], which results in pMad translocation to the

nucleus, where it represses bam [5,6]. By LL3, only PGCs that

reside at the niche accumulate pMad in their nuclei (Figure 6A,A9

Figure 4. Gonad development requires ecdysone signaling and Broad expression. In all panels except (C, D), 1B1 antibody labels fusomes
and outlines somatic cells. (A) Anti-Vasa (green) labels PGCs. EcRA.W650A LL3 ovaries are much smaller than wild type ovaries (compare Figure 4A to
Figure 1G). (B) EcRA.W650A ovaries contain very few TF cells (hh-LacZ, green), which are not organized into stacks (compare Figure 4B to Figure 2H).
(C, D) TF and cap cells are labeled by anti-En (magenta). PGCs are labeled by anti-Vasa (green). (C) Expression of N-intra greatly increases the number
of En-labeled cap cells at the base of TFs (arrowheads). (D) Cap cells are not observed in EcRA.W650A ovaries. (E, F) ICs are labeled by anti-Tj
(magenta) and are located next to PGCs (anti-Vasa, Blue). 1B1 labeling is green. (E) In wild-type, no Tj labeling is observed at the anterior at LL3. ICs
intermingle with PGCs. (F) In EcRA.W650A ovaries, ICs lie outside of the PGC region. As in wild type, no Tj staining is observed at the anterior. (G–I) TFs
are labeled by hh-lacZ (green). (G) Ovaries over-expressing InR are larger and contain fully formed TF and cap cells (arrows). (H) Over-expression of InR
in EcRA.W650A rescues gonadal size. However, very few TF cells are specified (arrows), which are not organized into stacks. (I) Fewer, shorter TFs are
present in br-RNAi ovaries. (J) br1 LL3 ovaries are small with less developed TFs. (K, L) Precocious cysts and TFs in EcR-RNAi ovaries (K, inset,
arrowheads) are not observed when ovaries also lack broad (I, inset, arrowheads). Bars in (A) (for A, B, E–L) and in C (for C, D) are 10 mm.
doi:10.1371/journal.pbio.1001202.g004
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Figure 5. Broad over-expression results in precocious niche and PGC differentiation. (A–C) TF cells are marked by anti-Engrailed
(magenta). Differentiating PGCs are marked by bamP-GFP (anti-GFP, green). (A) In wild type ML3 ovaries, TF formation initiates, but PGCs are not yet
differentiating. No GFP labeling is evident. (B, C) In Br-Z1 (B) and Br-Z4 (C) over-expressing ML3 ovaries, substantial PGC differentiation is observed.
More TF cells are specified in Br-Z1, but not in Br-Z4 ovaries. (D–F) PGCs are labeled green (anti-Vasa). (D) In a wild-type adult germarium, 8- and 16-
cell cysts are labeled with anti-Orb (magenta). Orb localizes to the selected oocyte (arrowheads). (E) Wild-type PGCs do not express Orb. (F) Cysts in
Br-Z1 over-expressing ovaries can express Orb, which is sometimes localized to an oocyte (arrowheads). Bars in (A) (for A–C), in (D), and in (E) (for E, F)
are 10 mm.
doi:10.1371/journal.pbio.1001202.g005

Figure 6. Ecdysone signaling is required for bam up-regulation in differentiating PGCs. All panels depict LL3 ovaries. 1B1 (magenta)
outlines somatic cells and fusomes. (A) In wild type LL3 ovaries, only PGCs closest to the niche retain pMad labeling (anti-pMad, green). (A9) is a
grayscale image of the green channel. PGC region is outlined. pMAD positive PGC nuclei are marked by arrowheads. (B) PGCs that are located away
from the niche and do not carry pMAD in their nuclei up-regulate bam (bamP-GFP, green). PGCs located in niches do not express bamP-GFP
(outlined). (C) In EcRA.W650A ovaries, some PGCs, which are close to anterior or posterior somatic cells, retain pMAD labeling. Most PGCs do not
retain pMad staining. (C9) is a grayscale image of the green channel. PGC region is outlined. pMAD positive nuclei are marked by arrowheads. (D) No
corresponding elevation of bamP-GFP can be observed in EcRA.W650A ovaries. Bar in (A) for all panels is 10 mm.
doi:10.1371/journal.pbio.1001202.g006
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arrowheads). In PGCs that are away from the niche, only

background levels of pMad are observed. These PGCs up-regulate

BamP-GFP (Figure 6B) [7,13]. Similar to wild-type ovaries, only a

fraction of PGCs in EcRA.W650A LL3 ovaries retained pMad,

while most PGCs already down-regulated it. We counted an

average of 21 (SD = 5, N = 15) pMad positive PGCs out of a total

of 89 PGCs (SD = 7, N = 15). The fraction of pMAD positive

PGCs in EcRA.W650A (23.6%) is comparable to the percentage

of pMAD positive PGCs in wild type ovaries (45 pMAD positive

PGCs, SD = 8, N = 11, which are 22.5%–30% out of 150–200

PGCs at LL3).

The spatial distribution of pMad labeling was somewhat

different in EcRA.W650A ovaries. pMad labeled cells were

located mostly next to the few specified TF cells, but some were

also detected at the posterior. pMad-positive PGCs were always in

contact with somatic cells (Figure 6C,C9 arrowheads). We assume

this difference is due to the fact that ICs, which were shown in the

adult to mediate Dpp diffusion [35–37], do not intermingle with

PGCs in EcRA.W650A ovaries. In addition, pMad levels within

PGCs were reduced as compared with wild type PGCs (Table 2),

probably reflecting the reduced amounts of niche cells, which

produce Dpp [4]. Strikingly, despite the loss of pMad labeling in

76.4% of PGCs, which was comparable to wild type, bamP-GFP

was not up-regulated in any of these cells (Figure 6D). Thus,

although PGCs lose their major maintenance cue, they delay their

differentiation in the absence of somatic ecdysone signaling. This

result is particularly intriguing since Mad represses bam transcrip-

tion directly [5,6]. It suggests that PGC maintenance can be

uncoupled from PGC differentiation and that other signaling

pathways, which are indirectly affected by ecdysone, might

integrate on the bam promoter.

Ecdysone Signaling Is Required in Parallel for Niche
Formation and PGC Differentiation

The dual effect of ecdysone signaling on both somatic cells and

PGCs raises the question of how these two processes are

connected. One option is that ecdysone signaling, through broad,

is only required for somatic niche maturation, which then triggers

PGC differentiation. Alternatively, ecdysone signaling and Broad

might be required first for niche formation and later, indepen-

dently, for PGC differentiation. Over-expression of Broad-Z4

resulted in precocious PGC differentiation, without affecting niche

formation, suggesting a separate role for ecdysone in the

maturation of these two cell populations (Table 1, Figure 5C).

To experimentally test whether PGC differentiation depends on

an ecdysone-mediated event that is independent of niche

formation, we used a temperature-sensitive Gal80 [38] to

temporally control the expression of the dominant negative

EcRA.W650A. Larvae were raised in a permissive temperature

until niche formation had begun, but before PGCs differentiate

(Materials and Methods, Figure S5). Following a shift to the

restrictive temperature, the state of niche development and PGC

differentiation was examined. Under these conditions, TFs and

cap cells could be observed in both control and experimental

ovaries (Figure 7A,B, arrows). These niches were functional, since

PGCs that were attached to them maintained pMAD labeling

(Figure 7A,B, arrowheads, N = 36 and N = 25, respectively). In

control ovaries, PGCs that were not located close to niches up-

regulated bamP-GFP (Figure 7C, N = 49). However, PGCs in

EcRA.W650A ovaries failed to differentiate and did not up-

regulate bamP-GFP, despite niche formation (Figure 7D, N = 56).

Similar results were observed with a temperature-sensitive allelic

combination of EcR (EcRA438T/EcRM554fs, unpublished data,

N = 25 ovaries). These data suggest that PGC differentiation

requires wild-type ecdysone signaling even after niches have

formed.

To understand why PGCs failed to differentiate in

EcRA.W650A temperature shifted ovaries, we examined Br-Z1

expression. Br-Z1 was expressed in the anterior of these ovaries

and in the formed niches (Figure 7E, arrows, N = 31). Anterior

expression of Br-Z1 in the temperature shift experiments is

expected, since in wild-type LL3 ovaries tj-Gal4 expression is weak

in these regions (Figure 1G). Significantly, no Br-Z1 could be

observed in ICs, which are located posterior to the niches, and

where tj-Gal4 is strongly expressed. These results further implicate

Br-Z1 expression within ICs, rather than within niches, as

required for PGC differentiation at the end of larval development.

Figure 7. Distinct ecdysone-mediated events are required for
niche formation and for PGC differentiation. (A–D) Niche cells are
labeled with Anti-En (magenta). (A, B) PGCs containing pMAD (anti-
pMAD, green, arrowheads) can be seen in both control and
EcRA.W650A ovaries, close to newly formed cap cells (arrows). (C, D)
Differentiating PGCs express bamP-GFP (anti-GFP, green). (C) In wild-
type LL3 ovaries, PGCs that are not associated with niches differentiate
and express bamP-GFP normally. (D) When ecdysone signaling is
blocked by expression of EcRA.W650A after niches form, but prior to
PGC differentiation, PGCs fail to differentiate despite normal TF
formation. No GFP expression in PGCs is observed. Faint, non-specific,
GFP can be observed in a few TF cells in both control and experimental
ovaries. (E) Br-Z1 (anti Br-Z1, magenta) is expressed in formed niches of
EcRA.W650A temperature-shifted ovaries (arrows), but is not expressed
in ICs. Bar in (A) (for A–E) is 10 mm. (F) 0–4 h prior to wandering
behavior (in food), most ovaries do not carry differentiating PGCs (light
bars), while 0–4 h following the initiation of wandering, most ovaries
carry differentiating PGCs (black bars).
doi:10.1371/journal.pbio.1001202.g007
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We used the temperature shift approach to further test the

temporal requirement of EcR in gonad morphogenesis and found

that somatic expression of EcRAW650A only in the adult resulted

in normal ovariole morphology (Figure S5). Likewise, a defect in

ecdysone signaling during larval development could not be

corrected by wild type signaling in the adult ovary. Overall, the

temperature shift experiments demonstrated an absolute require-

ment for somatic ecdysone signaling during larval ovarian

development. In particular, these experiments demonstrate that

ecdysone is required in parallel for niche and PGC differentiation;

even when ovarian morphogenesis is normal, and niches do form,

an additional ecdysone-mediated event must occur to allow PGC

differentiation.

A Specific Pulse of Ecdysone Is Required for PGC
Differentiation

The temperature shift experiments suggest that PGCs might

differentiate in response to a specific ecdysone pulse, occurring

after ML3 and prior to pupation. At least one such pulse has been

identified in Drosophila [39]. To test this idea more directly, we

timed wild-type PGC differentiation by analyzing the expression of

bamP-GFP and found that PGC differentiation coincides with the

initiation of wandering behavior. When insect larvae attain a

critical body size, an ecdysone pulse triggers distinct behavioral

changes that include cessation of feeding and seeking a location for

pupation (wandering behavior) [40]. 0–4 h prior to the initiation

of wandering only 21% of the ovaries contained very few

differentiating PGCs (Figure 7F). bamP-GFP levels in these

differentiating PGCs were very low, indicating very early stages

of differentiation (Figure S6). In contrast, 0–4 h following the

initiation of wandering 85% of larval ovaries contained many

differentiating PGCs with strong bamP-GFP labeling (Figure 7F,

Figure S6). The tight temporal correlation between PGC

differentiation and wandering behavior suggests that a specific

ecdysone peak is required for PGC differentiation and that

hormonal regulation is directly involved in initiating oogenesis in

flies.

Discussion

When organized niches that contain a defined number of stem

cells are established during organ development, the precursors of

those niches and stem cells should be coordinated. Such

coordination could manifest itself in matching numbers of both

populations of cells, and in temporal coordination of proliferation

and differentiation. Here we provide evidence that such

coordination occurs in the developing fly ovary by ecdysone

signaling (Figure 8). To our knowledge, this is a first demonstration

that niche precursors and stem cell precursors are coordinated,

and that a single signaling pathway is responsible for this

coordination. The parsimonious manner of controlling an entire

stem cell unit could be a general principle in organogenesis.

During organ regeneration, niches and stem cells might also

communicate to create well-balanced and morphologically correct

stem cell units. Finding the signaling pathways that underlie these

processes will prove beneficial for the use of stem cells or their

derivatives for organ regeneration.

The Temporal Axis of Ovary Formation
In the forming Drosophila ovary, the ecdysone signaling

pathway coordinates somatic niche formation with GSC

establishment, leading to the formation of 16–20 stem cell units.

The dual function of early repression and late activation of

Broad by EcR/Usp allows this pathway to initially repress

both niche and stem cell precursors. Later, ecdysone signaling

sequentially initiates TF formation and then PGC differenti-

ation (Figure 8). Within the temporal framework, provided by

repeated ecdysone pulses, other signaling pathways may partic-

ipate in determining the specific rate of precursor cell

proliferation and their differentiation. Future work will be needed

to determine at what level ecdysone signaling controls these

pathways. Our results show that somatic ecdysone signaling elicits

a secondary signal that integrates on the major axis of GSC

maintenance/differentiation. This signal is required to induce

Bam expression in PGCs that are located away from the niche

and to initiate their differentiation. Whether ecdysone signaling

directly affects the major genes required for niche differentiation

remains to be seen.

Ecdysone initiates niche formation at ML3, and PGC

differentiation a few hours later. These events do not occur with

the earlier peaks of ecdysone, at first and second instar. Gene

activation by nuclear hormone receptors is highly context-

dependent, and each target gene may require particular co-

repressors or co-activators. We hypothesize that the target genes

required for the differentiation of niches and PGCs are different,

with promoters that require different ligand concentration or

different co-activators, which might only be expressed at

particular developmental times. Another option (not mutually

exclusive) is that the target cells for the two roles of ecdysoene

(i.e., niche formation and PGC differentiation) are different;

clonal analysis suggests that ecdysone signaling is required within

TF precursors for their differentiation, while ICs may control

PGC differentiation. Several lines of evidence suggest a parallel

role of ecdysone in niche and PGC differentiation. First, over-

expression of Broad-Z4 leads to PGC differentiation, without

affecting niche formation (Figure 5, Table 1). Second, our

temporal shift experiments demonstrated that niche formation in

itself is insufficient to induce PGC differentiation (Figure 7).

Lastly, in EcR and usp-RNAi ovaries, Broad-Z1 is over-expressed

mainly in ICs, indicating that this cell population, which is in

direct contact with PGCs, is a possible source for a signal

inducing PGC differentiation (Figure 3). What that substance

might be is currently under investigation.

Changing Roles of Ecdysone Signaling in the Ovary
Activation of the ecdysone signaling pathway in the larva leads

to PGC differentiation. In contrast, activation of this pathway in

the adult is required to maintain GSCs un-differentiated [21].

Thus, ecdysone signaling serves opposite functions in the adult and

in the larva. We have previously demonstrated that many of the

mechanisms that maintain GSCs in the adult are already required

to maintain PGCs in the larva [15]. Ecdysone signaling is

therefore a first regulator that exhibits a reversal of function

between a developing stem cell unit and a functional one. The

distinct consequence of ecdysone signaling in adult and larval

ovaries is reflected in the different manner in which the signal is

transmitted. In contrast to the larva, the adult function of ecdysone

is cell autonomous and does not seem to strongly rely on Broad

function [21]. In addition, somatic ecdysone signaling in the larva

is transmitted to PGCs by a signal that integrates downstream of

pMad, on the bam promoter (Figure 6), while in the adult ecdysone

signaling affects GSCs upstream of pMad [21]. In addition to a

role within GSCs, ecdysone signaling may be required in Escort

cells for correct cyst development [22]. Thus, the different

physiological conditions during larval development and in the

adult lead to very different effects on a forming versus an adult

stem cell unit.
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An Invertebrate Brain-Gland-Gonad Axis
One other difference between adult and larval ecdysone

signaling is the source of ecdysone that reaches the ovary. In the

adult, ecdysone is produced locally by developed egg chambers

and is affecting GSCs in a physiological positive feedback loop

[21,41]. In the larva, developed egg chambers do not exist. The

temporal correlation of PGC differentiation with the peak of

ecdysone that leads to wandering behavior demonstrates that

larval ovaries, similar to other larval organs, respond to ecdysone

that is produced by the prothoracic gland, located near the fly’s

brain.

This suggests a similarity to vertebrate development that was

hitherto unappreciated. In verterbrates, a hypothalamic-pituitary-

gonadal axis initiates and accompanies adult reproductive

responses [42,43]. This work shows that in fruit flies, a brain-

gland-gonad axis also operates. The anatomical analogy, however,

does not fully extend to the molecular messengers that convey the

signals. The hypothalamus-pituitary connection can be equated

with the fly neurons that release PTTH into the prothoracic gland,

and elicit ecdysone production [44]. Similar to LH and FSH,

which are released from the pituitary gland, ecdysone released

from the prothoracic glad affects the gonads and is required for the

initial differentiation of PGCs (i.e., for the initiation of oogenesis).

Later in adult life, akin to steroid hormones produced by the

vertebrate gonad, ecdysone is produced by mature egg chambers

[41]. It will be of interest to establish whether the testis in

Drosophila males also produces ecdysone.

Nuclear Hormone Receptors in Organogenesis and
Regeneration

Even prior to the initiation of reproduction in mammals,

nuclear receptors are involved in gonadogenesis. Nr5a1 is required

for the formation of both the ovary and the adrenal gland [45,46].

Interestingly, Nr5a1 is a mammalian homologue of Ftz-f1, which

also has a role in Drosophila gonadogenesis. The physiological role

of hormones in niche or stem cell function is not limited to the

gonads. Hormones were shown to affect the hematopoietic stem

cell niche [47], and the mammalian homologue of EcR promotes

EcR/Usp

Broad

Ecdysone

EcR/Usp

Somatic
Broad

Early 3rd instar Late 3rd instar

Germ line stem cell

Primordial germ cell

Differentiating  PGC Terminal Filament cell

Cap cell

Figure 8. Coordination of niche formation with GSC establishment by ecdysone. At early third instar, ecdysone receptors repress niche
formation and PGC differentiation; this allows the gonad time to grow and generate sufficient precursor cells of both cell populations that will
eventually form 16–20 stem cell units. Repression of the target gene broad is a key component of this repression. At mid-third instar and later, the
hormone ecdysone activates Broad-Z1 expression in the somatic cells of the ovary through EcR and Usp. This leads first to formation of niches and,
later, concomitant with wandering behavior, to PGC differentiation, by an unknown mechanism. Only PGCs that are located next to niches are
protected from differentiation and become the adult GSCs.
doi:10.1371/journal.pbio.1001202.g008
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neurogenesis in human embryonic stem cell cultures [48]. Steroid

hormones are also required for the regeneration of the mammary

gland [49,50]. Similar to our results with ecdysone, the effects

of hormones on mammary stem cells are probably indirect,

through support cells. Whether the analogy could be extended,

and these hormones will prove to affect niche development,

remains unanswered. Future work will undoubtedly solve this

issue, since understanding how niches and stem cells are

coordinated by hormones, or other signals, is crucial for the

understanding of regeneration and for applicative approaches in

cell-based therapies.

Materials and Methods

Fly Stocks
tj-Gal4 is a NP insertion line (P{GawB}NP1624) into the traffic

jam gene, and was obtained from the Drosophila Genetic Resource

Centre. UAS-Broad-Z1, Z2, Z3, and Z4 were generously provided

by Dr. Lynn Riddiford (HHMI, Janelia Farms Research Campus).

bamP-GFP is a reporter GFP fused to a fragment of the bam

promoter. The transgene located on the X chromosome was

obtained from Dr. Dennis McKearin. RNAi lines directed against

EcR (1765R-4, 1765R-2) or Usp (4380R-1) were obtained from

NIG-Fly. RNAi lines against EcR (37058), Usp (16893), and Broad

(104648) were obtained from VDRC. RNAi line EcR-IR was from

Bloomington. Throughout the main text, RNAi lines 1765R-4,

1765R-2 for EcR, and 4380R-1 for Usp are shown. Somatic

expression of EcR-IR and line 16893 resulted in fewer and less

developed cysts than lines 37058, 1765R-2, 1765R-4, and 4380R-

1. FRT19A, usp3 was provided by Dr. Oren Schuldiner

(Weizmann Institute). FRT80B, Eip74EFDL-1 was provided by

Dr. Daniela Drummond-Barbosa (Johns Hopkins University).

UAS-Nintra was provided by Dr. Allison Bardin (Institute Curie).

br1, br5, UAS-EcRA.W650A, UAS-EcRB1.W650A, UAS-EcRB2.

W650A, Eip75B07041, and Ftz-f103649 were obtained from the

Bloomington Stock Center. UAS-InR and UAS-lacZ were

provided by Dr. Jessica Treisman (NYU School of Medicine).

Somatic clones were generated using the line c587-Gal4, UAS-

flp ;; FRT2A, ubi-GFP/TM6. Germ line clones were generated

using the line UAS-flp; nos-Gal4; FRT2A, ubi-GFP. usp clones were

generated using FRT19A, arm-lacZ; hs-Flp. Clones were induced

by heat-shock 48 h AEL, for 30 min at 37uC.

Larval Staging and Temporal Control of EcR.W650A
Expression

To obtain flies in similar developmental stages, care was taken

to work with under-crowded cultures. Flies were transferred into a

fresh vial to lay eggs for 2 h, and were then removed. Vials were

left at 25u for 96 h (mid third instar, ML3) or 120 h (late third

instar, LL3). Under these conditions the development of wild type

gonads is uniform. The terminology we use is according to

Ashburner [51] and is different from the one used by Zhu and Xie

[13], who go by King [52].

For time course of PGC differentiation, consecutive layings of

2 h were allowed to mature in a 25uC incubator with 70%

humidity and 12 h of dark-light cycles. Under these conditions,

flies begin wandering behavior at 112 h AEL.

For temporal control of EcRA.W650A expression: bamP-GFP;tj-

Gal4/UAS-EcRA.W650A;UAS-Gal80ts, flies were cultured for 6 d

at 18uC, then shifted to 29uC for an additional day. Alternatively,

a regime of 7 d at 18uC, and a shift to 29uC for an additional day

was used (Figure S5). In both cases, larvae were crawling on the

bottle walls when dissected.

Antibody Staining
The following monoclonal antibodies were obtained from the

Developmental Studies Hybridoma Bank, developed under the

auspices of the NICHD and maintained by the University of Iowa,

Department of Biology: Monoclonal 1B1 (developed by Dr.

Howard Lipshitz) antibody is directed against an Adducin (1:20);

LC28.26 (contributed by Dr. Paul Fisher) anti-LaminC (1:20);

6H4 (developed by Dr. Paul Schedl) anti-Orb antibody (1:20);

25E9.D7 anti-Broad Core (1:10), Z1.3C11.OA1 anti-Broad Z1

(1:10) developed by Dr. Greg Guild; 15G1a anti-EcRA (1:10),

AD4.4 anti-EcRB1 (1:10), AG10.2 anti-EcRC developed by Drs.

Carl Thummel and David Hogness; 4D9 anti-Engrailed (1:20),

developed by Dr. Corey Goodman. Rabbit anti-Vasa (1:5000) was

a gift from Dr. Ruth Lehmann (HHMI, New York University).

Rabbit anti-pMAD was a gift from Dr. Ed Laufer (Columbia

University). Rabbit anti-b Gal (1:15,000) was from Cappel. Rabbit

anti-GFP (1:1,000) was from Invitrogen. Secondary antibodies

were from Jackson Immunoresearch or from Invitrogen.

Unless otherwise specified, all incubations were at room

temperature. Ovaries were dissected in Drosophila Ringers Buffer

and fixed for 20 min with 5% formaldehyde. Ovaries were then

washed once for 10 min with PBS containing 1% Triton-X-100

(1% PBT), and washed again with 1% PBT for an additional hour.

Ovaries were blocked with PBS containing 0.3% Triton-X-100

and 1% BSA (0.3% PBTB) for 1 h, and then incubated with first

antibody in PBTB overnight at 4uC. Ovaries were washed twice in

0.3% PBTB for 30 min and then blocked with 0.3% PBTB

supplemented with 5% Normal Donkey Serum (NDS) for 1 h.

Secondary antibody was diluted in 0.3% PBTB supplemented with

5% NDS. Following 2 h incubation with secondary antibody,

ovaries were washed three times in 0.3% PBT, 30 min each, and

mounted with Vectashield (Vector Laboratories).

Confocal imaging was with Zeiss LSM 710 on a Zeiss Observer

Z1.

For statistical analyses, two-tailed student’s t tests were

performed. p values are indicated.

Supporting Information

Figure S1 Manipulation of ecdysone signaling components in

PGCs does not induce PGC differentiation. In all panels, 1B1

outlines somatic cells and labels fusomes within germ cells

(magenta). (A–D) Germ cells are labeled by anti-Vasa (green).

Expression of Eip75B (A), EcR-RNAi (B), usp-RNAi (C), or the

dominant negative EcRA-W650A (D) in germ cells using the germ

line driver nos-Gal4 does not affect ovary development. TFs form

normally, fusomes are spherical or bar-like (indicating dividing

PGCs), and no germ line cysts can be observed (insets,

arrowheads). (E–G) GFP (green) labels wild-type cells. Germ cells

mutant for Eip75B07041 (E), ftz-f103649 (F), usp3 (G), or Eip74EFDL-1

(H) do not differentiate to form cysts, and harbor spherical or bar-

like fusomes (arrowheads). Bar in (A), for all panels is 10 mm.

(TIF)

Figure S2 Different adult expression patterns of Gal4 lines do

not correspond to larval expression patterns. In all panels, 1B1

outlines somatic cells and labels fusomes (red). Anti-GFP is green.

(A–C) Adult germaria. (A) ptc-Gal4 driving UAS-GFP. GFP is

expressed in escort cells, but not in cap cells (arrowheads). (B, C)

bab-Gal4 supports UAS-GFP expression in TF and Cap cells

(arrowhead in C). In some ovarioles GFP can also be observed in

Escort cells (C). (D, E) LL3 ovaries. In contrast to the different

adult expression patterns, ptc-Gal4 and bab-Gal4 exhibit similar

expression patterns in L3 ovaries. GFP is strongly expressed in the

anterior of the ovary; weaker expression can be seen in the TF and
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cap cell region (arrows). ICs are expressing stronger levels of GFP

(arrowheads).

(TIF)

Figure S3 Expression of ecdysone receptors in larval ovaries.

(A,B) PGCs are labeled by anti-Vasa (green). Anti-EcR-B1

(magenta) stains somatic nuclei at the end of second instar (LL2,

panel B). No staining was observed at the end of first instar (LL1),

suggesting that EcR-B1 expression is induced during the second

instar. (C, E, G, I) hh-lacZ (green) stains niche cells to indicate co-

labeling with EcRs. (C, D) Low levels of EcR-A (magenta in C,

and same image in D, white) are observed in all somatic nuclei at

ML3. Earlier expression of EcR-A could not be detected either

due to low expression levels or due to low antibody reactivity.

Panels (F), (H), and (J) show the indicated EcR labeling in white.

EcR-B1 is expressed in all somatic nuclei including forming TFs

during ML3 (E, F) and LL3 (I, J). Similar results are obtained with

anti-EcR-A (G, H).

(TIF)

Figure S4 Developmental delays upon somatic expression of

EcRB1 and EcRB2 dominant negative forms. In all panels, anti-

Vasa (green) marks germ cells and 1B1 (magenta) outlines fusomes

and somatic cells. (A–C) ML3 ovaries. (A) In wild-type ML3

ovaries, initiation of TF formation can be observed by constriction

of cells destined to become TFs (arrow). EcRB1.W650A (B) or

EcRB2.W650A (C) ML3 ovaries are smaller in size. In addition,

no constriction of TF cells can be observed. In wild type, cells that

migrate to the posterior of the ovary are at this stage located

medially (A, star). This group of cells is smaller in EcRB1.W650A

(B) and hard to find in EcRB2.W650A (C). (D–F) LL3 ovaries. (D)

In wild type, TFs are fully formed, and so is the posterior of the

ovary (star). (E) In EcRB1.W650A, the posterior group is smaller,

while in EcRB2.W650A (F), it is still located medially (star). TFs

are smaller and fewer in EcRB2.W650A ovaries. Bars in A (for A–

C) and in D (for D–F) are 10 mm.

(TIF)

Figure S5 Temporal requirement for somatic ecdysone signal-

ing. In all panels, germ cells are labeled with anti-Vasa (green). (A–

H) 1B1 monoclonal antibody labels somatic cell membranes and

fusomes within germ cells (magenta). (A–D) Manipulations were

performed using constant expression of tj-Gal4 during larval and

adult stages (no Gal80ts present). (A) In adult EcR-RNAi ovary

niches and cyst development are normal. (B) An entire ovary from

EcRA.W650A flies. The somatic expression of this dominant

negative construct throughout fly development results in small un-

differentiated adult ovaries. No individual ovarioles or normal cyst

development could be observed. (C) An entire ovary of a Br-RNAi

female. Similar to EcRA.W650A, no individual ovarioles and no

proper cyst development could be observed. (D) Br-RNAi is

epistatic to EcR-RNAi. Removing both EcR and Br-RNAi results

in ovarian phenotypes that are similar to removing Br. (E–J)

Temperature shift experiments. Constructs were expressed using a

tj-Gal4; Gal80ts driver. (E, F) Flies were raised at 18 degrees until

adulthood (allowing normal development of niches). Adult flies

were shifted to the restrictive temperature for 6 d (KD-knock

down). Normal niches and normal cyst development are observed

for both control LacZ (E) and EcRA.W650A (F) ovaries, indicating

that somatic EcRA does not affect early cyst development in the

adult. (G, H) Flies were raised in the restrictive temperature until

the end of larval development. Pupae were then transferred to the

permissive temperature. While control LacZ ovaries displayed

normal oogenesis (G), defective ovaries and lack of oogenesis were

observed in EcRA.W650A ovaries. This indicated that the

requirement for somatic ecdysone signaling during larval devel-

opment is absolute and cannot be rescued by normal EcR function

in pupal and adult times. (I, J) TF cells are labeled by anti-En

(magenta). Larvae were raised at the permissive temperature for 6

(I) or 7 (J) d. TF cells are just beginning to form (I) and first stacks

can be seen (J) at these times. Following transfer to the restrictive

temperature TF cells still form for several hours, until the effects of

Gal80ts wear out (Figure 7).

(TIF)

Figure S6 Temporal sequence of PGC differentiation. In all

panels, anti-GFP (green) marks differentiating PGCs and anti-En

(magenta) outlines TFs. (A) Representative bamP-GFP larval ovary

taken from larvae 2–4 h prior to wandering. TF stacks are

forming, but PGCs are not yet differentiating. No GFP expression

can be observed. (B, C) Ovaries taken from a larvae 0–2 h prior to

wandering. Most ovaries still do not harbor differentiating PGCs

(B). However, in some ovaries weak GFP expression in very few

PGCs can be observed (C, arrowhead). (D, E) Representative

bamP-GFP larval ovary taken from larvae 0–2 h after wandering

behavior is initiated. Many more PGCs are expressing bamP-GFP

(arrowheads). (F) Ovary taken from a larva 2–4 h following the

initiation of wandering behavior.

(TIF)

Text S1 Supplemental experimental procedures.

(DOC)
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