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Abstract

It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards
light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a
century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we
establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events
associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at
and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-
BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous
expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby
increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are
subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into
the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception
and differential phototropic growth is conserved in angiosperms.
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Introduction

Plants have evolved numerous ways to optimize photosynthetic

light capture. Phototropism, the reorientation of growth towards

light, is one of the most important of these adaptive processes [1].

Originally identified in monocot coleoptiles by Charles and

Francis Darwin, phototropism is initiated by light perceived at

the shoot tip generating a diffusible signal that influences

differential elongation in the tissues below [2]. Subsequent studies

have since shown that phototropism arises from increased growth

on the shaded side of the stem [3], owing to an accumulation of

the phytohormone auxin [4]. The role of PHOTOTROPIN

(phot) blue-light receptors in establishing phototropic curvatures in

the model dicot Arabidopsis thaliana is well established [5], as is

evidence supporting auxin accumulation on the shaded side of

photostimulated hypocotyls [6,7].

To date, little is known regarding the molecular events that

transduce photoreceptor activation into auxin redistribution across

the growing stem. Genetic analyses in Arabidopsis have identified

several auxin transporter families [4]. Of these, members of the

PIN-FORMED family, named after the influorescence phenotype

of the pin1 mutant, are the primary mediators of directional auxin

fluxes that regulate plant development [8]. PIN3 is proposed to

mediate lateral auxin fluxes by differentially restricting auxin to

the vascular cylinder [6]. Consistent with this mode of action,

PIN3 exhibits a subcellular localization on the inner side of bundle

sheath cells [6]. However, PIN3 also functions in apical hook

opening [9], which may contribute to the delayed phototropism

observed in etiolated pin3 seedlings [6,10].

Another transporter implicated in phototropism is ATP-

BINDING CASSETTE B19 (ABCB19/MDR1/PGP19; herein

abbreviated B19), which transports auxin out of the shoot apex

and maintains long-distance auxin transport streams primarily by

preventing cellular reuptake and diffusion into cells adjoining

vascular tissues [11,12]. B19 is predominantly localized apolarly at

the plasma membrane [12–14] and functions coordinately with

PIN1 to mediate polar auxin flow from the shoot apex to the roots

[15]. Additionally, b19 mutants exhibit enhanced phototropic

curvature [10,15] that has been attributed to auxin accumulation

in the hypocotyl elongation zone as a consequence of decreased
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PIN1-B19-mediated polar transport [10,15]. A role for B19 in

seedling photomorphogenesis has also been reported that is

dependent on CRYPTOCHROME (cry) and PHYTO-

CHROME (phy) photoreceptors [16,17], both of which are

known to impact phototropism in Arabidopsis [18,19].

We therefore sought to clarify the roles of B19 and PIN3 in

establishing phototropic curvatures by discriminating auxin

transport processes associated with phototropism from those

involved in seedling photomorphogenesis. To address this, we

employed an unconventional strategy to analyze phototropic

responses in Arabidopsis post-photomorphogenesis by subjecting

light-grown seedlings to dark acclimation. By adopting this revised

experimental approach, we uncover new mechanistic information

regarding the roles of B19 and PIN3 in effecting phototropism and

demonstrate a direct link between photoreceptor activation and

auxin transporter function. Furthermore, we provide clear

evidence that lateral auxin fluxes required for phototropism in

Arabidopsis seedlings are initiated in and above the hypocotyl apex

and not in the region of differential growth, analogous to the auxin

transport mechanisms proposed for monocot phototropism almost

a century ago.

Results

Hypocotyl Phototropism in Arabidopsis Following Dark
Acclimation

Phototropism to directional blue light is traditionally examined

using etiolated seedlings. However, studies performed in this

manner examine the combined processes of phototropism and

seedling photomorphogenesis. For the experiments described here,

it was desirable to discriminate auxin transport processes

associated with phototropism from those involved in seedling

photomorphogenesis. To isolate phototropic responses from de-

etiolation events, 3-d-old light-grown seedlings were subjected to a

24-h period of dark acclimation prior to phototropic stimulation.

Light-dependent autophosphorylation of phot1 and phot2 was

readily detectable following dark acclimation (Figure 1A), as was

Figure 1. Phototropic response of dark-acclimated Arabidopsis.
(A) Autophosphorylation activities for phot1 and phot2 in membranes
isolated from wild-type (WT) and phot1-5 phot2-1 seedlings. Protein
extracts were given a mock irradiation (darkness, D) or irradiated with
10,000 mmol m22 white light (L) in the presence of radiolabeled ATP. (B)
Phototropic response of seedlings (upper left) exposed to directional
blue light (BL, 1 mmol m22 s21) for 12 h (upper right). Also shown is the
phototropic bending of b19–1 (lower left) and pin3–4 (lower right) to
blue light for 12 h and 24 h, respectively. (C) Phototropic time course
for wild-type, phot1–5, b19–1, B19 overexpressing (b19oe), and pin3–4
seedlings. Hypocotyl deviation from the vertical was calculated (inset)
by subtracting the measured angle (h) from the vertical to determine
the total angle of deviation (indicated by the dotted lines). Results
represent the mean + standard error, n = 10 seedlings. (D) Vertical
hypocotyl growth within the first hour after treatment with directional
blue light (1 mmol m22 s21) or continued darkness. Results represent
the mean 6 SD, n = 10 seedlings in three independent experiments.
Asterisks represent significant differences from wild type among
treatments (p , 0.05, t test).
doi:10.1371/journal.pbio.1001076.g001

Author Summary

Plants depend on sunlight for photosynthesis and adapt
their growth to optimize light capture. Phototropism, the
reorientation of growth towards light, is one important
adaptive response. Modern studies of phototropism began
with experiments in monocotyledonous grasses by Charles
Darwin and led ultimately to the discovery of the plant
growth hormone auxin, establishing the concept that light
perception at the shoot apex triggers differential bending
in the tissues below. In the past two decades, molecular-
genetic analysis in the model flowering plant Arabidopsis
thaliana has identified the principle photoreceptor for
phototropism, phot1, as well as the major auxin trans-
porters. Despite extensive efforts, how the photoreceptor
regulates auxin transport so as to establish differential
growth is still poorly understood, as is whether this
process is conserved between monocots and dicots. Here,
we introduce a new approach to the study of Arabidopsis
phototropism in the absence of developmental events
associated with seedling photomorphogenesis. In doing
so, we show that the proximity of light perception and
differential growth is conserved between monocots and
dicots: in both plant types, differential growth is a
consequence of lateral auxin movements across the shoot
apex. Moreover, we identify two auxin transporters, PIN3
and ABCB19, that contribute to these movements, the
latter serving to prime lateral auxin fluxes in the shoot
apex. ABCB19 function is regulated by phot1, identifying it
as a substrate for this class of photoreceptor kinase.

New Light on the Mechanism of Dicot Phototropism

PLoS Biology | www.plosbiology.org 2 June 2011 | Volume 9 | Issue 6 | e1001076



reproducible arching of the photostimulated hypocotyl along the

vertical agar surface (Figure 1B). Hence, dark acclimation can be

used to restore phot activity to its ground state, thereby offering a

means to study hypocotyl phototropism after photomorphogenesis.

After dark acclimation, phototropism within the first 12 h of

treatment with low fluence rate blue light (1 mmol m22 s21) was

attributed solely to the action of phot1 (Figure 1C), as observed in

etiolated seedlings under equivalent light conditions [20].

Similarly, hypocotyls of b19 mutants showed enhanced bending

relative to wild type that was evident as early as 2–4 h after

treatment (Figure 1C). Seedlings overexpressing B19 displayed

reduced initial rates of curvature (Figure 1C) consistent with the

expanded auxin efflux activity in these transgenic lines [21]. In

contrast to etiolated seedlings (Figure S1A), bending of dark-

acclimated pin3 hypocotyls was initially enhanced (Figure 1C), but

was less than that of wild type when photostimulated beyond 12 h

in both dark-grown and dark-acclimated seedlings (Figure S1B).

However, bending in pin3 mutants occurred at a higher position of

the hypocotyl compared to wild type or b19 mutants (Figure 1B),

suggesting that PIN3 is spatially important for establishing

phototropic curvature in dark-acclimated seedlings.

Prior to bending, hypocotyls of dark-acclimated seedlings

showed reduced vertical growth in response to directional blue

light, as reported for etiolated Arabidopsis seedlings [22] and rice

coleoptiles [23], which was dependent on phot1 and not cry or phy

photoreceptors (Figure 1D). Hypocotyl growth inhibition was still

apparent in pin3 mutants, whereas mutants lacking B19 showed

comparable growth rates in dark and light but were reduced in

comparison to phot1 mutants (Figure 1D). Pooling of auxin in the

upper hypocotyl region, including the cotyledonary node, through

an interruption of B19 function rather than PIN3 would concur

with the observed hypocotyl growth arrest that precedes

phototropism.

phot1 Activation Reduces Polar Auxin Transport
To determine whether the observed differences in vertical

hypocotyl growth rates correlate with alterations in polar auxin

flow, transport of the principle auxin indole-3-acetic acid (IAA)

from the shoot apex was monitored in the presence or absence of

directional blue light. Such an approach is not feasible with

etiolated Arabidopsis seedlings since they lack a fully exposed shoot

apex. 3H-IAA was applied to the shoot apex of dark-acclimated

seedlings under safe light conditions. Seedlings were either

retained in darkness or exposed to directional blue light (1 mmol

m22 s21), and sections corresponding to the upper hypocotyl/

cotyledonary node and the mid hypocotyl/elongation zone were

harvested for radiotracer analysis. Measurements of 3H-IAA in

these sections confirmed that directional blue light inhibits polar

flow from the apical region (Figure 2A) to the mid hypocotyl

(Figure 2B), resulting in IAA accumulation within the apical

region. Moreover, blue-light-dependent inhibition of polar auxin

transport was dependent on phot1, as phot1 mutants lacked this

response (Figure 2A and 2B).

Apical auxin retention by phot1 showed little dependence on

PIN3, PIN1, and ABCB1 (abbreviated to B1), a second member of

the ABCB transporter family, while a loss of B19 function

increased retention (Figure 2A and 2B). Conversely, overexpres-

sion of B19 reduced apical auxin (Figure S2). These findings

suggest that B19 is a likely target of phot1 action to retain auxin

within the upper hypocotyl within the first hour of blue-light

exposure.

Quantification of endogenous IAA levels by gas chromatogra-

phy–mass spectrometry showed a trend similar to that of the

radiotracer studies (Figure 3A). phot1 mediated modest increases in

IAA accumulation in the apical tissues of dark-acclimated seedlings

that included the upper hypocotyl, petioles, and cotyledons

(Figure 3A). However, endogenous IAA levels were actually lower

in the apical tissues of b19 seedlings after cotyledon removal

(Figure 3B), whereas the levels of the IAA catabolism products

oxindole-3-acetic acid (oxIAA) and oxIAA-glucose (oxIAA-Glc)

were increased (Figure 3C). These findings suggest that sustained

pooling of IAA in the shoot apex of b19 mutants is sufficient to

induce its catabolic activity [24]. The enhanced rates of phototro-

pism typically associated with b19 mutants most likely involve more

dynamic or localized auxin accumulations than previously thought.

phot1 Interacts with B19
To ascertain whether B19 represents a component of phot1

signaling, we performed co-immunoprecipitation using Arabidopsis

expressing functional PHOT1:phot1–green fluorescent protein

[GFP] [25]. B19 was found to co-immunoprecipitate specifically

with phot1-GFP in darkness (Figure 4A). B19-phot1 interactions

were also verified by mass spectrometry analysis of phot1-GFP and

B19–hemagglutinin (HA) immunoprecipitates (Tables S1 and S2).

In vivo irradiation prior to immnunoprecipitation of phot1-GFP

Figure 2. IAA transport in dark-acclimated seedlings. (A) 3H-IAA
accumulation in the upper hypocotyl/cotyledonary node (UH). 3H-IAA
(5 nl) was applied to ten seedling apices under a green safe light.
Seedlings were exposed to directional blue light (BL, 1 mmol m22 s21)
or continued darkness (D). Upper hypocotyls including the cotyledon-
ary node were excised after 2.5 h. Mean hypocotyl lengths were 5 mm
(wild type [WT] and phot1–5), 4.3 mm (b19–1), 4.8 mm (b1–1), 4.3 mm
(b1–1 b19–1), 4.8 mm (pin1–5), and 4.5 mm (pin3–4). Results represent
the mean + SD, n = 10 seedlings in three independent experiments.
Asterisks represent significant differences from wild type among
treatments (p , 0.05, t test). (B) 3H-IAA accumulation in the mid
hypocotyl (MH) determined as in (A).
doi:10.1371/journal.pbio.1001076.g002

New Light on the Mechanism of Dicot Phototropism
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attenuated its interaction with B19, implying that this interaction

was transient upon phot1 kinase activation (Figure 4A), a property

commonly associated with kinase-substrate interactions. A direct

interaction between B19 and phot1 was further confirmed by

bimolecular fluorescence complementation (BiFC). Reconstitution

of a yellow fluorescent protein (YFP) signal at the plasma

membrane was evident in tobacco epidermal cells co-expressing

phot1 and B19 (Figure 4B), whereas no fluorescence was detected

when either phot1 or B19 was expressed with empty vector

controls (Figure S3).

The cytosolic C-terminus of B19 (B19C), encompassing its

second nucleotide-binding domain (NBD), is important for its

transporter activity and for mediating protein interactions [13,26].

We found that B19C interacts with the C-terminus of phot1,

including its Ser/Thr kinase domain, both in yeast (Figure 4C) and

in in vitro co-immunoprecipitation assays (Figure 4D). Further-

more, domain mapping showed that the catalytic kinase subunit of

phot1 was necessary for this interaction (Figure 4C). These data

therefore suggest that B19 may function as a substrate for phot1

kinase activity. If this is the case, then substrate phosphorylation

would be expected to be limited to B19 as no interaction was

observed between phot1 kinase and the C-terminus of B1 in yeast

(Figure 4C), despite its expression (Figure S4).

phot1 Inhibits B19 Transporter Activity
Our attempts to express functional phot1 and B19 simulta-

neously in either insect cells or Schizosaccharomyces pombe were

unsuccessful, precluding the possibility of investigating substrate

phosphorylation by co-expression analysis in these systems. As an

alternative, functional B19 generated in membranes of S. pombe

was mixed with active phot1 enriched from insect cells for in vitro

phosphorylation analysis. Although the addition of S. pombe

membranes reduced the level of phot1 autophosphorylation from

insect cells, increased phosphorylation of B19 in the presence of

phot1 was apparent using this approach (Figure 5A). Phosphor-

ylation of B19 in the presence of phot1 was verified by

immunoprecipitation (Figure 5B), suggesting that B19 is a

substrate target for phot1 kinase activity.

Figure 3. IAA accumulation in dark-acclimated seedlings. (A)
Free IAA levels in wild-type (WT), phot1–5, and b19–1 seedlings. IAA
measurements were determined as described [43] after 2.5 h directional
blue light (BL, 1 mmol m22 s21) or continued darkness (D). Apical tissues
including the upper hypocotyl, petioles, and cotyledons were excised
for analysis, in addition to the mid hypocotyl (MH). (B) Free IAA
determinations as in (A), but after cotyledon excision. Apical tissues
including the upper hypocotyl and cotyledonary node with the lower
half of the petioles were excised for analysis. (C) Accumulation of auxin
catabolites oxIAA and oxIAA-Glc in dark-acclimated wild-type and b19–1
seedlings. Upper hypocotyls/cotyledonary nodes were excised and
assayed. In each case, results represent the mean + SD, n = 100
seedlings in three independent experiments.
doi:10.1371/journal.pbio.1001076.g003

Figure 4. phot1 interacts with B19. (A) phot1-GFP and the plasma
membrane marker fusion GFP-Lti6b were immunoprecipitated from
membranes from 3-d-old etiolated seedlings (D) or seedlings exposed
to blue light (BL, 20 mmol m22 s21) for 5 min. Samples were subjected
to immunoblot analysis with anti-GFP and anti-B19 antibodies. Input
(left) represents solubilized microsomes used for immunoprecipitation
(IP, right). (B) BiFC fluorescence images of phot1-YN and B19-YC co-
expressed in tobacco leaf epidermis. Reconstitution of YFP fluorescence
was visible at the plasma membrane. Scale bar = 20 mm. (C) The C-
terminus of phot1 including its Ser/Thr kinase domain (amino acids
612–996) interacts with B19C (amino acids 1121–1252) in yeast. Growth
on minimal selection medium (MS) selects for co-transformants, while
growth on full selection medium (FS) selects for interacting proteins.
Deletion of the catalytic subunit of phot1 kinase (shaded black, amino
acids 663–961) results in a loss of interaction. phot1 kinase also interacts
with the internal NBD of B19 (B19I, amino acids 480–660). No
interaction was detected between phot1 kinase and the C-terminus
of B1 (B1C, amino acids 1049–1286). Vectors encoding murine p53 and
the SV40 large T-antigen were included as a positive control. (D) In vitro
binding of B19C to phot1 kinase (P1K). Equivalent amounts of GST-P1K
and GST (indicated in the upper panel by Ponceau S staining) were
incubated with c-Myc-tagged B19C synthesized by in vitro transcrip-
tion/translation (Input). Binding of B19C was visualized by immunoblot
analysis with anti-c-Myc antibodies. Sizes of molecular weight markers
are indicated on the left (kilodaltons).
doi:10.1371/journal.pbio.1001076.g004

New Light on the Mechanism of Dicot Phototropism
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B19 is a stable plasma membrane protein that does not exhibit

the dynamic relocalization characteristics of PIN transporters [12].

We therefore rationalized that B19 phosphorylation by phot1

could impact its transporter activity as opposed to its subcellular

trafficking. To address this, we examined Arabidopsis ABCB

transporter function in HeLa cells, as reported previously [13].

Expression of B19 and B1 resulted in auxin efflux in this system,

whereas expression of phot1 was without effect (Figure 5C). In

each case, light treatment of HeLa cells resulted in a modest

increase in auxin efflux activity. However, co-expression with

phot1 reduced B19 transporter activity, particularly following

irradiation. Introduction of a single point mutation (D806N)

shown previously to inhibit phot1 kinase activity [27] abrogated

this effect, indicating that phot1 activation leads to a loss of B19

transporter function. Consistent with our yeast two-hybrid analysis

(Figure 4C), phot1 had no impact on B1-mediated auxin transport.

While B19C interacts with phot1 kinase (Figure 4C and 4D),

potential phosphorylation sites may include those residing within the

first NBD of B19 [28], since this region was also found to interact

with phot1 kinase (Figure 4C). One mechanism by which phot1

phosphorylation could impact B19 activity is by altering its

interaction with key regulatory proteins. The immunophilin-type

Figure 5. phot1 phosphorylation and regulation of B19 auxin transporter activity. (A) In vitro phosphorylation of B19 in the presence of phot1
(upper panel). Functional B19-HA was expressed in S. pombe, whereas active phot1 was expressed in Spodoptera frugiperda (Sf9) insect cells. Membranes
containing B19-HA were mixed with phot1 enriched by nickel affinity chromatography. Samples were given a mock irradiation (D) or irradiated with
10,000 mmol m22 white light (L) after the addition of radiolabeled ATP. The asterisk indicates phot1 autophosphorylation. B19-HA is phosphorylated in the
presence of phot1 (indicated by the black arrow). S. pombe membranes expressing no B19-HA (vector only) were included as a control. B19-HA and phot1
protein levels were monitored using anti-HA and anti-phot1 antibodies, respectively (lower panels). Sizes of molecular weight markers are indicated on the
right (kilodaltons). (B) Phosphorylation of B19-HA by phot1 in (A) was confirmed by immunoprecipitation (IP) of B19-HA using anti-HA antibodies (right
lane). All samples were treated with light. No B19 phosphosignal was detected in the absence of B19 (center lane) or when Sf9 extracts lacking phot1 were
used as a control (left lane). (C) phot1 regulation of B19-mediated auxin efflux in HeLa cells. Cells were prepared under a green safe light then incubated in
darkness (D) or exposed to white light (L, 4 mmol m22 s21) for the duration of the assay. Light-treated samples alone are shown for both B19 and B1 co-
expression with kinase inactive phot1 (D806N). Data are expressed as net 3H-IAA efflux (calculated from net 3H-IAA retention in cells expressing indicated
proteins versus that of empty vector controls). Results represent mean + SD, n = 3. Three cell wells were used for each assay. The asterisk represents a
significant difference between dark and light treatments (p , 0.05, t test). (D) To determine the effect of blue light on B19-TWD1 interactions in dark-
acclimated seedlings, 3-d-old light-grown (L) Arabidopsis seedlings overexpressing TWD1 and functional B19-HA [12,13] were subjected to dark acclimation
(DA) prior to irradiation with directional blue light (BL, 2 mmol m22 s21) for 2 h. B19-HA was immunoprecipitated with anti-HA antibody and subjected to
immunoblot analysis with anti-B19 and anti-TWD1 antibodies. No attenuation of B19-TWD1 interactions was observed when B19 was immunoprecipitated
from the phot1-5 mutant. The asterisk (*) indicates the position of B19. (E) Interaction analysis as in (D) but with 3-d-old dark-grown (D) seedlings.
doi:10.1371/journal.pbio.1001076.g005
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protein FKBP42/TWISTED DWARF 1 (TWD1) interacts directly

with B19 [26] and is a positive regulator of B19-mediated auxin

transport [21]. Co-immunoprecipitation of TWD1 with B19-HA

was readily detected in dark-acclimated seedlings overexpressing

TWD1 (Figure 5D). However, TWD1-B19 interactions were

attenuated following 2 h of blue-light treatment. A similar effect of

blue light was observed on TWD1-B19 interactions in etiolated

seedlings (Figure 5E). In each case, a decrease in interaction between

TWD1 and B19 following blue-light exposure was not observed in

the phot1 mutant, suggesting that phot1 could act to repress B19

activity in Arabidopsis by disrupting its interaction with TWD1.

Lateral Auxin Fluxes Are Initiated above the Site of
Phototropic Growth

Given the above results we conclude that localized pooling of

auxin at and above the hypocotyl apex (Figure 2A), which

coincides with reduced vertical growth at the onset of phototro-

pism (Figure 1D), most likely results from a transient inactivation

of B19 initiated by phot1 kinase activity. Consequently, auxin

retention in the region immediately above the hypocotyl apex and

not the elongation zone would serve to prime subsequent lateral

fluxes required for phototropism [7,23]. In monocots, lateral auxin

redistribution is proposed to occur at the coleoptile tip, the

predominant site of asymmetric phot1 activation [29]. Our results

therefore suggested that a similar mechanism of phototropic

detection exists in Arabidopsis. To address this, we monitored

cellular auxin accumulation using the synthetic transcriptional

reporter DR5rev:GFP. Activity of the auxin-responsive promoter

DR5 has been used to visualize the spatial pattern of auxin

responses, and hence, indirectly, the distribution of auxin [30].

In wild type, DR5rev:GFP was readily detected in the epidermis

and central vasculature of the cotyledonary node and upper

Figure 6. Blue-light-driven lateral auxin gradients in dark-acclimated hypocotyls. (A) Auxin distributions in dark-acclimated wild-type
(WT), pin3–4, and b19–1 seedlings were monitored using the auxin reporter DR5rev:GFP. DR5rev:GFP signals in the cotyledonary node (CN), upper
hypocotyl (UH), and elongation zone (EZ). Note the lack of signal in the central vasculature in b19–1. (B) DR5rev:GFP signals in hypocotyls exposed to
a directional blue light (BL, 1 mmol m22 s21) for 3 h. In all genotypes, signals are asymmetrically localized in the epidermal cells on the shaded side of
the hypocotyl (white arrows) in both the CN and UH. (C) Heat map representation of DR5rev:GFP signals shown in (A) and (B). Quantification of the
mean pixel intensity of the DR5rev:GFP signals associated with the epidermal regions of the CN are shown, as are the central vasculature signals for
the CN and UH. Quantification was performed using the analyze and measure functions within ImageJ (version 1.43u). Data are representative of
n = 20 seedlings in three independent experiments for wild type and n = 10 in two separate experiments for pin3–4 and b19–1. Scale bar = 200 mm.
doi:10.1371/journal.pbio.1001076.g006

New Light on the Mechanism of Dicot Phototropism
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hypocotyl (Figure 6A). Below in the elongation zone, DR5rev:GFP

was associated predominantly with the central vasculature.

Phototropic stimulation produced an asymmetric signal in the

epidermis encompassing the cotyledonary node and upper

hypocotyl after 3 h (Figure 6B) that was apparently phot

dependent (Figure S5A).

Heat map representation and quantification of the DR5rev:GFP

fluorescence imaging confirmed that there was an in increase in

signal on the shaded versus the irradiated side of the hypocotyl

apex and cotyledonary node (Figure 6C). Consistent with phot1

inhibition of B19-mediated auxin loading into, and retention

within, provascular/vascular tissues, DR5rev:GFP signals decreased

simultaneously in the vasculature of the elongation zone of wild-

type hypocotyls (Figure 6B and 6C). However, no DR5rev:GFP

asymmetry was detected in this epidermal region despite the onset

of curvature. Thus, the primary site of asymmetric auxin

accumulation following light perception by phot1 occurs at and

above the hypocotyl apex, not in the region of differential growth.

Lateral Auxin Fluxes Occur in b19 and pin3 Mutants
Lateral DR5rev:GFP signals were still apparent in b19 and pin3

seedlings following phototropic stimulation (Figure 6B and 6C).

Asymmetric auxin gradients were transient and no longer

detectable following a 12-h period of irradiation, except in b19

mutants, where a weak asymmetric signal persisted in the

epidermis of the shaded side of the hypocotyl (Figure S5B). More

rapid diversion of auxin out of vascular tissues in and above the

hypocotyl apex of b19 mutants (Figure 2A) may account for this

sustained lateral signal.

In comparison to wild type, DR5rev:GFP signals were reduced in

the central vascular tissue of b19 hypocotyls (Figure 6A), consistent

with both IAA, oxIAA, and oxIAA-Glc determinations (Figure 3)

and the cellular localization of B19:B19-GFP (Figure S6). Dynamic

pooling and catabolism of IAA within the central vasculature of

b19 seedlings may contribute to a cellular auxin status that is too

low for DR5rev:GFP to report. However, we cannot exclude the

possibility that sustained IAA overaccumulation in b19 mutants

could have an adverse effect on DR5rev:GFP reporter activity. In

contrast to b19 mutants, a strong DR5rev:GFP signal was observed

in the central vasculature of pin3 mutants (Figure 6A). Moreover,

the DR5rev:GFP fluorescence appeared to be more diffuse

throughout the bundle sheath, consistent with the role of PIN3 in

redirecting auxin back into the central cylinder [31]. Our

radiotracer studies also suggested that PIN3, like PIN1, participates

in auxin transport out of the hypocotyl apex and the region

immediately above (Figure 2A). In addition, functional PIN3:PIN3-

GFP fluorescence levels became reduced in and below the region of

elongation in dark-acclimated seedlings following phototropic

stimulation for 6 h (Figure 7A). By comparison, directional blue

light had no effect on the level of PIN7:PIN7-GFP fluorescence even

after 12 h of blue-light exposure (Figure 7B). The reduced

abundance of PIN3 in the lower hypocotyl following phototropic

stimulation, combined with the higher position of curvature

associated with pin3 (Figure 1B) and pin3 b19 mutants (Table 1),

led us to propose that PIN3 is involved in channeling auxin to the

region of differential growth once lateral redistribution has been

established in and immediately above the hypocotyl apex.

Discussion

Arabidopsis Sheds New Light on the Cholodny-Went
Theory

In recent years, Arabidopsis has been used extensively as a genetic

model to dissect the light-sensing and signaling mechanisms

associated with phototropism [1]. However, research to date has

focused on etiolated seedlings that simultaneously undergo

photomorphogenesis in addition to phototropism when irradiated

with directional blue light. In the present study, we show that it is

possible to probe auxin fluxes associated with phototropism after

such de-etiolation events are fully established. Dark-acclimated

light-grown seedlings, like etiolated seedlings [20], are phototropi-

cally responsive (Figure 1A and 1B), but provide a more amenable

system to study auxin transport processes in response to blue-light

irradiation (Figure 2A and 2B). The open cotyledons of light-grown

seedlings do influence the curvature formation of photostimulated

hypocotyls owing to their friction against the vertical agar surface,

which must be uniformly maintained by experimental conditions.

Nevertheless, the contribution of the cotyledons to the curvature

response itself is likely to be minimal, as both phototropism and the

establishment of lateral auxin fluxes can be detected in seedlings

where the cotyledons have been removed prior to photostimulation

(Figure 8A).

Figure 7. PIN3- and PIN7-GFP localization in dark-acclimated seedlings. (A) Functional PIN3:PIN3-GFP fluorescence in hypocotyls of
seedlings exposed to blue light (BL, 1 mmol m22 s21) for 6 h or continued darkness. A blue-light-treated seedling is shown on the right and white
arrows indicate a decrease in PIN3:PIN3-GFP signal. Scale bar = 200 mm. (B) Functional PIN7:PIN7-GFP fluorescence in hypocotyls of seedlings exposed
to blue light (1 mmol m22 s21) for 12 h or continued darkness. Scale bar = 20 mm. Heat map representations of GFP signals are shown on the right. In
each case data are representative of n.20 seedlings.
doi:10.1371/journal.pbio.1001076.g007
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With regard to phototropism, we draw two main conclusions

from this work. First, the lateral auxin translocation system in

dark-acclimated Arabidopsis seedlings complies with the Cholodny-

Went theory of tropic curvature proposed for monocots in the late

1920s [32]. This hypothesis predicts that asymmetric light is

perceived at the coleoptile tip and causes auxin to move from the

irradiated to the shaded side. Auxin then moves down the

coleoptile, where the higher concentration on the shaded side

promotes differential growth towards light as a result of increased

cell elongation. Although subject to many criticisms since it was

first introduced, the Cholodny-Went theory has received consid-

erable support from monocot studies [1,3]. However, the apex has

generally not been regarded as the site of phototropic perception

in dicots [33]. Rather, studies of the auxin transport processes

associated with Arabidopsis phototropism have focused on possible

redistribution of auxin out of the central vasculature at the

hypocotyl elongation zone [6].

Here we demonstrate that the Cholodny-Went theory holds

true for dicot phototropism, where the primary site of lateral auxin

translocation resides at and above the hypocotyl apex (Figure 6).

Quantification of DR5rev:GFP signals within the upper hypocotyl

in wild type and pin3 mutants suggests that the increase in auxin in

the epidermis of the shaded side of the hypocotyl coincides with a

decrease in signal from the central vasculature (Figure 6C). This

differs from the situation in monocots, where a net movement

from the irradiated to the shaded side of the coleoptile is thought

to establish the auxin asymmetry [23]. However, it is worth noting

that this conclusion is drawn from radiotracer studies that monitor

the effect of light on polar IAA transport within two separate

halves of the coleoptile [1,3]. A spatial assessment of cellular auxin

levels will be necessary to determine whether lateral auxin

translocation in monocots is established differently from what is

observed in dark-acclimated Arabidopsis.

A Model for Dicot Phototropism
The results presented here also provide new mechanistic

information about the development of hypocotyl phototropism

in Arabidopsis (proposed schematically in Figure 8B). In particular,

our studies uncover a direct connection between the primary

photoreceptor for phototropism, phot1, and the auxin transporter

B19. More specifically, B19 functions as a target for phot1 action

in the shoot apical tissues to initially halt vertical growth

(Figure 1D) and concentrate auxin within this region (Figure 2A

and 2B). These findings are consistent with earlier reports showing

that an inhibition of polar auxin transport [34], as well as light-

mediated growth inhibition [22,23,35], precedes the onset of

phototropic curvature.

B19 is directly regulated by phot1 kinase activity, identifying it

as a likely substrate for this class of photoreceptor kinase (Figures 4

and 5A–5C). Regulation of B19 function in planta may require

more complex phosphorylation events involving other kinases.

Reconstitution of active B19 and phot1 in artificial membranes

would aid analyses of their interactions, although such efforts have

not been successful to date. Our data also suggest that in vivo

interactions between phot1 and B19 are likely to be transient

following irradiation (Figure 4A). This finding is not unexpected

given that phot1 is rapidly internalized from the plasma

membrane following blue-light excitation [25] and receptor

autophosphorylation [36]. A transient interaction would also

ensure that B19 transporter activity is not continually inhibited by

phot1 action. One possible consequence of phot1 phosphorylation

could be to disrupt an interaction between B19 and its positive

regulator TWD1 (Figure 5D and 5E). If so, the FKBP38

mammalian ortholog of TWD1 [21] would also serve as a target

of phot1 action on B19 transporter activity in HeLa cells

(Figure 5C). Studies are now underway to test this potential mode

of regulation (Figure S7).

Table 1. Phototropic bending in auxin transport mutants of Arabidopsis.

Genotype Mean Bending Angle (8 h) ± SD Student’s t Test Compared to Col-0 Notes

Col-0 2662.4 ND

pin1–1 2066.8 ND

pin1–5 2363.6 ND

pin2 (agr1–1, eir1–1) 2762.3 ND

pin3–4 3361.6 .p = 0.014 Bends at a higher position in the hypocotyl

pin4–1 2562.8 ND

pin7 (N548791) 1863.0 , p = 0.023

pin1–5 pin3–4 2864.7 ND

pin3–4 b19–1 3462.9 .p = 0.021 Bends at a higher position in the hypocotyl

b1–1 2863.5 ND

b4–1 2763.6 ND

b19–1 3962.2 .p = 0. 023

b1–1 b4–1 b19–1 4063.8 .p = 0.006

pin1–1 b1–1 b19–1 3466.6 ND

aux1–7 2364.5 ND

aux1 lax2 lax3 2163.3 p = 0.101

Homozygous dark-acclimated seedlings were analyzed for phototropic bending induced by 8 h directional blue light (1 mmol m22 s21). Results represent the mean 6

SD, n = 10 seedlings in three independent experiments except for pin1–1 and pin1–1 b1–1 b19–1, where eight and five seedlings were used, respectively, in each
experiment. For assays of pin1–1 and pin1–1 b1–1 b19–1, progeny of a single plant heterozygous for pin1–1 were used in the bending assays. Reduced-bending pin1–1
seedlings and increased-bending pin1–1 b1–1 b19–1 seedlings were selected and grown to maturity then examined for pin-formed inflorescences to determine if they
were homozygous for pin1. Significant differences compared to wild type (Col-0) are indicated. ND, not determined.
doi:10.1371/journal.pbio.1001076.t001
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Following its transient pooling in apical perivascular tissues,

auxin is subsequently translocated from the central vasculature to

the epidermis at the shaded side, where PIN3 participates in its

transport to the elongation zone below. Retention of auxin in the

elongation zone is facilitated by a reduction in PIN3 abundance in

and below this region of the hypocotyl after phototropic

stimulation (Figure 7A). Without PIN3, auxin is unable to move

downward to this region. Consequently, localized apical pooling

results in faster initial rates of curvature (Figure 1C) at a higher

region of the hypocotyl (Figure 1B). This is not apparent with

etiolated pin3 seedlings, where curvature is reduced (Figure S1A),

an outcome possibly arising from PIN3’s impact on apical hook

opening [9] as reported for PIN1 [13].

Lateral Auxin Translocation Processes
The second conclusion to be drawn from this work is that the

lateral translocation of auxin required for phototropism does not

depend on B19 or PIN3 (Figures 1C and 6). Indeed, this process

cannot be ascribed to any of the well-characterized auxin

transporters, as mutants lacking these proteins are phototropic in

our dark-acclimated system despite showing some altered rates in

bending (Table 1). In light of these results, efforts to contrive a

response mechanism involving these components are not convinc-

ing. Coordinated action between multiple transporters is therefore

likely to drive the lateral redirection of auxin that is necessary to

establish phototropic growth. PIN7 could be a factor in the lateral

redistribution process, in conjunction with other transporters, as

Figure 8. Auxin movements associated with phototropism in dark-acclimated Arabidopsis. (A) Auxin distributions in dark-acclimated wild-
type seedlings where the cotyledons were excised prior to analysis. DR5rev:GFP signals in dark- or light-treated seedlings were monitored as in
Figure 6. Heat map representation of DR5rev:GFP signals is shown on the right. BL, blue light; CN, cotyledonary node; EZ, elongation zone; UH, upper
hypocotyl. (B) Schematic model of auxin movements associated with phototropism. Red lines represent polar auxin movement from the shoot to the
root. Weight of the lines represents the relative amount of auxin movement. (1) In darkness, auxin primarily moves through the vascular tissues in the
petioles and hypocotyl, and also through epidermal tissues, (2) Upon exposure to directional blue light, auxin movement is temporarily halted at the
cotyledonary node and the seedling stops elongating vertically. (3) This is followed by a redistribution of auxin at the cotyledonary node to the
shaded side of the seedling and a channeling to the elongation zone below. (4) Subsequent elongation of the cells on the shaded side of the
hypocotyl results in differential growth and bending towards the light source.
doi:10.1371/journal.pbio.1001076.g008
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dark-acclimated pin7 seedlings are phototropic, but exhibit lower

curvatures relative to wild type (Table 1).

The mechanism by which lateral auxin gradients are established

is still unknown. As demonstrated here, phosphorylation of the

transporters involved by phototropic receptors offers one possible

mode of regulation. phot1 could control the subcellular trafficking

of regulatory components of the lateral relocation process, as

recent studies have identified ADP-ribosylation factors as direct

interaction targets [37]. Lateral translocation may also be directed

by differential proton extrusion, which represents a primary

driving force for both auxin uptake and efflux [4]. Further studies

of NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) will

undoubtedly be important to improve our understanding of the

processes involved, as mutants lacking this protein are aphoto-

tropic [38] and fail to exhibit lateral auxin transport [23]. NPH3 is

a plant-specific plasma-membrane-associated protein that directly

interacts with phot1 [38]. Photoactivation of phot1 leads to

dephosphorylation of NPH3, a signaling process that has been

linked to the onset of phototropic curvature [39], but how NPH3

functions to orchestrate auxin transport regulation remains poorly

understood. Members of the PHYTOCHROME KINASE

SUBSTRATE (PKS) protein family are known to play a role in

the establishment of phototropic curvatures [40], in addition to

other phot-mediated responses [41]. We anticipate that adoption

of this revised system to study phototropism will accelerate our

understanding of the role of these, and as yet undiscovered,

components of phototropic signaling.

Materials and Methods

Plant Material and Growth
The Arabidopsis thaliana ecotype Col-0 was used throughout this

study. Details of each line can be found in Table S3. Unless

otherwise stated, seedlings were grown on 0.8% agar plates

containing J Murashige Skoog basal salts (pH 5.5) supplemented

with 0.5% sucrose for 3 d under white light (100 mmol m22 s21).

During growth, plates were tilted 2u back from the vertical. Plates

were transferred to darkness in light-tight gas exchange boxes

equipped with directional 450-nm blue-light LED arrays (Roith-

ner Lasertechnik) calibrated to 1 mmol m22 s21 and an infrared

light source (Electro Optical Components) and tilted 1u forward

for 24 h to dark acclimate. Subsequent growth in light or darkness

was measured using a CCD video camera (Sony) equipped with a

narrow band pass infrared filter (Electro Optical Components).

Images were quantified using Image J software (US National

Institutes of Health). Phototropism in etiolated seedlings was

performed as described [42].

Auxin Transport and Quantification
Auxin transport and quantification was performed as described

[13,26]. 3H-IAA at 10 mM (30 Ci mmol21, American Radiola-

beled Chemicals) was dissolved in ethanol. 3H-IAA was adsorbed

to the surface of 125-mm to 212-mm polystyrene beads (Sigma) and

placed at the hypocotyl apex by touching the tips of the true leaves

with a micromanipulator and liquid stream from a pipettor. All

experiments were prepared under green or red safe lights.

Seedlings were incubated in darkness or directional blue light

(1 mmol m22 s21) for the times indicated. Sections were collected

under white light, with cuts through the true leaves/cotyledonary

petioles to remove sites of contact with polystyrene beads and

hypocotyl immediately below the cotyledonary node. A second

section, corresponding to the mid hypocotyl and elongation zone,

was collected by making a second cut in the hypocotyl 2 mm

below. Free IAA determination was performed as described [43]

on sections made from the mid hypocotyl and apical tissues

including the upper hypocotyls, petioles, and cotyledons. oxIAA

and oxIAA-Glc levels were assayed by liquid chromatography–

mass spectrometry using a Waters Micromass Q-TOF micro and

Agilent HPLC-MSD/TOF system calibrated to a standard curve

generated with a defined mixture of IAA, oxIAA, and oxIAA-Glc

using 13C-IAA (Cambridge Isotopes) as an internal standard.

Auxin Efflux Assays in HeLa Cells
Assays were performed as described [13,44] in darkness or

under a green safe light unless otherwise stated. Cells were

transfected with pTM1 vectors encoding B19 and PHOT1 in a

ratio of 4:1, respectively. Co-expression of PHOT1 and B19 was

verified by real time quantitative PCR and immunolocalization as

described [13].

Immunoprecipitation from Arabidopsis
Membrane proteins were extracted and GFP immunoprecipi-

tation performed as described [42]. Proteins were identified by

liquid chromatography–tandem mass spectrometry using the

Fingerprints Proteomics Facility (University of Dundee). B19

immunoprecipitation was performed as described [12,13], and

proteins identified by using liquid chromatography–matrix-

assisted laser desorption/ionization mass spectrometry analysis

(Bindley Bioscience Center, Purdue University).

Yeast Two-Hybrid Analysis
Interaction assays were carried out as described [37]. Interac-

tions between regions of B19 cDNA and PHOT1 cDNA were

performed using pGADT7 prey and pGBKT7 bait vectors,

respectively (Clontech). The C-terminal region of B1 used for yeast

two-hybrid analysis was as described [26].

In Vitro Co-Immunoprecipitation
Expression of GST-fusion proteins and GST was performed as

described [37]. The TNT System (Promega) was used to generate

c-Myc-tagged protein from 2-mg circular plasmid DNA

(pGBKT7). The MagneGST Protein Purification System (Pro-

mega) was used for in vitro GST pull-down assays in accordance to

the manufacturer’s instructions. Proteins were eluted in 16 SDS-

PAGE loading buffer and subjected to SDS-PAGE and immuno-

blotting with anti-c-Myc antibodies (Roche).

In Vitro Kinase Assays
B19-HA was expressed in S. pombe [45]. Sf9 insect cells were

used to express phot1 harboring a 6xHis epitope [27]. Sf9 extracts

were passed through a HisSpinTrap column (GE Healthcare) in

accordance with the vendor’s protocol. Eluted phot1 was desalted

using a microcon 1000 centrifugal filter (Millipore), and phos-

phorylation assays performed [27] in 20-ml reactions with 3 mg of

phot1 extract and 10 mg of S. pombe membranes containing B19-

HA. Immunoprecipitation of B19-HA following in vitro phos-

phorylation assays was performed as described [46] using anti-HA

antibodies (Santa Cruz Biotechnology) and Immunobead Reagent

(Bio-Rad). Kinase assays with plant membranes were performed as

reported [42].

Confocal Microscopy
Images were collected using a Zeiss LSM 710 confocal laser-

scanning microscope with a 406 water immersion objective (1.4

numerical aperture, C-Apochromatic) and argon laser. Excitation

was fixed at 488 nm using the primary dichroic mirror, and the

Meta detector was used to capture GFP (492–533 nm) emission.
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Attenuation of the 25-mW argon laser was set at 30%. Master gain

was set to 812, and the digital offset to 4. Pinhole size was 78 mm.

No autofluorescence was observed in wild-type seedlings using

these settings. Bright-field images were acquired simultaneously

using the transmission detector. For BiFC, the coding sequence of

B19 was cloned via BamHI/SmaI into the binary vector pSPYCE-

35S, and assays performed as described [36].

Supporting Information

Figure S1 Phototropic responsiveness of pin3 mutants.
(A) Phototropic response of 3-d-old etiolated wild-type (WT) and

pin3-4 seedlings. Directional blue light (1 mmol m22 s21) was

supplied for 12 h. Results represent the mean 6 standard error,

n = 10 seedlings. (B) Phototropic response of dark-acclimated wild-

type and pin3-4 seedlings. Seedlings were subjected to directional

blue light (1 mmol m22 s21) for the times indicated. Results

represent the mean + standard error, n = 10 seedlings.

(TIF)

Figure S2 3H-IAA accumulation in dark-acclimated
seedlings overexpressing B19 (b19oe). Seedlings were

exposed to directional blue light (BL) (1 mmol m22 s21) or

continued darkness (D). Upper hypocotyls including the cotyle-

donary node (UH) and mid hypocotyls including the elongation

zone (MH) were excised after 2.5 h. Results represent the mean +
SD, n = 10 seedlings in three independent experiments.

(TIF)

Figure S3 Bright-field BiFC fluorescence images of
phot1-YN and B19-YC co-expressed in tobacco epider-
mal cells. Reconstitution of YFP fluorescence between phot1-

YN and B19-YC was visible at the plasma membrane (left). Only

background YFP signals were detected for phot1-YN and YC

(center) or YN and B19-YC (right). Scale bar = 20 mm and applies

to all images.

(TIF)

Figure S4 Expression of phot1 kinase and the C-
terminal NBD of B1 in yeast. Immunoblot analysis of yeast

co-expressing phot1 kinase (P1K) and the C-terminal NBD of B1

(B1C). Protein extracts (10 mg) co-expressing phot1 kinase and

either B1C (1) or empty vector controls (2) were probed with anti-

GAL4 DNA-binding domain and activation domain antibodies to

discriminate phot1 kinase and C-terminal B1 proteins, respectively.

(TIF)

Figure S5 Auxin accumulation in the upper hypocotyl/
cotyledonary node of dark-acclimated hypocotyls. (A)

DR5rev:GFP signals in phot1–5 phot2–1 seedlings exposed to

directional blue light (BL, 1 mmol m22 s21) for 3 h. Signal

intensity of DR5rev:GFP was noticeably lower in comparison to the

other lines examined, giving rise to higher background plastid

autofluorescence (represented by spots). (B) DR5rev:GFP signals in

seedlings exposed to directional blue light for 12 h. Note the lack

of signal in the vascular bundle in b19–1 seedlings and the reduced

signal in the vascular bundle below the upper hypocotyl in pin3–4

seedlings. Data are representative of n.5. In each case, scale bar

= 200 mm.

(TIF)

Figure S6 B19-GFP localization in dark-acclimated
seedlings. Functional B19:B19-GFP fluorescence is restricted

to the central vasculature and epidermis (white arrows). Central

spots represent plastid autofluorescence. Data are representative of

n.20. Scale bar = 100 mm.

(TIF)

Figure S7 Model depicting a potential mechanism for
the blue-light-dependent inhibition of B19-mediated
auxin transport activity. In darkness or ground state

conditions, B19 (blue, center) actively exports IAA from the

cytosol via interactions with its positive regulator TWD1. Under

these conditions, B19 also interacts with the blue-light photore-

ceptor phot1. In response to blue-light exposure, phot1 undergoes

autophosphorylation and transphosphorylates B19. Sites of B19

phosphorylation may also be targets for other regulatory kinases.

Phosphorylation of B19 may promote an alteration in protein

structure that disrupts its interaction with TWD1, leading to an

inhibition of IAA efflux. phot1 is internalized upon receptor

autophosphorylation, creating an inhibitory mechanism that is

transient and becomes reactivated upon dephosphorylation of B19

and phot1 by as yet unidentified protein phosphatases.

(TIF)

Table S1 Liquid chromatography–tandem mass spec-
trometry analysis of phot1-GFP immunoprecipitates.
Proteins identified with a Mascot score .100 are shown.
aPHOT1:phot1-GFP was immunoprecipitated from 3-d-old etio-

lated Arabidopsis seedlings kept in darkness (D) or exposed to a blue

light (BL, 20 mmol m22 s21) for 5 min. bTAIR AGI numbers

given where mass spectrometry data match a single accession;

‘‘various’’ denotes multiple isoforms were identified.

(DOC)

Table S2 Liquid chromatography–matrix-assisted laser
desorption/ionization mass spectrometry analysis of
B19 immunoprecipitates. Proteins identified with a Mascot

score .150 are shown. TAIR AGI numbers are given. B19:B19-

HA was immunoprecipitated from 5-d-old Arabidopsis seedlings.
aPreviously identified in B19 fractions [12].

(DOC)

Table S3 Lines used in this study.

(DOC)
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