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Abstract

The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network
analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and
22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy,
and regional connectivity, revealed that although children and young-adults’ brains have similar ‘‘small-world’’ organization
at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that
subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas
young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further,
combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking
revealed that the development of large-scale brain networks is characterized by weakening of short-range functional
connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic
process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the
systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our
study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying
functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental
disorders such as autism.
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Introduction

Understanding the development of human brain organization is

critical for gaining insight into brain organization and functions in

adulthood as well as for investigating disorders such as autism

spectrum disorders (ASD) and attention-deficit/hyperactivity disor-

der (ADHD), where normal developmental processes are disrupted.

Neuroimaging studies of development have primarily focused on

structural changes from childhood, to adolescence, and into

adulthood. These studies have reported age-related changes in (1)

overall brain volumes [1,2], (2) volumes of individual brain areas

[3,4], (3) regional cortical thickness [5,6], as well as (4) regional and

global grey-matter and white-matter densities [7–9]. Collectively

these studies have suggested that the human brain undergoes vast

developmental changes in grey and white matter structure between

childhood and adulthood. These changes are thought to reflect

synaptic pruning and myelination observed at the neuronal level

[8,9]. More recently, diffusion tensor imaging (DTI) studies

investigating the development of white-matter pathways have

shown increase in anisotropy [10–12], decrease in overall diffusion

[13], and maturation in major white-matter fiber tracts [14–19],

with age. In spite of growing evidence from these studies for

patterned brain development, the functional organization of the

human brain in childhood is not well understood and it is also not

clear how the above structural changes translate to differences in

functional brain organization between children and adults.

Task-free (resting-state) functional connectivity MRI is a useful

technique for investigating the functional organization of the

human brain. This method detects interregional correlations in

spontaneous blood oxygen level-dependent (BOLD) signal fluctu-

ations [20,21], and has been used to investigate brain networks

involved in motor [20], sensory [22], attention [23], salience and

cognitive control [24], and memory [25,26] systems. However,

only a small number of studies have examined developmental

changes in functional brain organization. A few recent studies

have examined developmental changes in functional connectivity

of brain regions involved in attention and cognitive control [27]

and the default mode network (DMN) [28], as well as in functional

connectivity of anatomical structures such as the anterior cingulate

cortex [29]. To our knowledge, the developmental changes in the

functional organization of large-scale networks at the whole-brain

level have not yet been investigated.
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Here we use a graph theoretical approach to examine

developmental changes in the large-scale functional organization

of the human brain. Graph metrics such as the clustering

coefficient and the characteristic path length [30,31] have been

shown to be useful measures of organization of large-scale

networks. Briefly, graphs are data structures that have nodes and

edges between the nodes [32]. The clustering coefficient is a

measure of local network connectivity. A network with a high

average clustering coefficient is characterized by densely connect-

ed local clusters. The characteristic path length is a measure of

how well a network is connected. A network with a low

characteristic path length is characterized by short distances

between any two nodes. Many biological systems have small-world

network properties, characterized by a high clustering coefficient

and a low characteristic path length [30,33].

These graph-theoretic metrics have also proven useful in

modeling the large-scale functional and structural organization

of the human brain [34–37]. In a graphical representation of a

brain network, a node corresponds to a brain region while an edge

corresponds to the functional connectivity between two brain

regions. Functional connectivity networks of the human brain

derived from electroencephalograms (EEGs), magnetoencephalo-

grams (MEGs), and task-free functional magnetic resonance

imaging (fMRI) data have been shown to exhibit small-world

characteristics [35,38,39]. These studies suggest that small-world

metrics are suited to quantify the global topological properties of

large-scale organization of the human brain. Recently, in addition

to small-world metrics, Bassett and colleagues used graph theoretic

metrics such as hierarchy to characterize local topological

properties of large-scale organization of the human brain. Using

structural brain imaging data and modeling of interregional

covariance in cortical thickness, they reported that hierarchical

organization in anatomical human brain networks is characterized

by the presence of frontal hubs [40]. A recent study of aging by

Meunier and colleagues investigated the modular organization of

large-scale functional brain networks using Newman’s graph-based

modularity metric. They reported that while both young and older

adults showed modularity of network organization, the topological

roles of the specific brain regions as well as the intermodular

connectivity was significantly different between the two groups

[41]. The use of small-world metrics along with more advanced

graph theoretic metrics to characterize local organization of

complex networks provides a new approach for investigating large-

scale functional organization of the human brain at multiple levels

of granularity.

We investigated developmental changes in the functional

organization of large-scale brain networks at multiple levels by

(1) creating whole-brain functional connectivity networks from

task-free fMRI data, (2) characterizing the organization of these

networks using metrics of global and local brain organization

(including small-worldness and hierarchy, as defined in the

Methods section), and (3) comparing these metrics of global and

local brain organization between healthy children (ages 7–9 y)

and young-adults (ages 19–22 y). In older adults (age 640 y) it is

now well established that large-scale brain networks have a

small-world architecture that reflects a robust and efficient,

nonrandom, functional organization [34,35,39]. Whether chil-

dren and younger adults have a similar functional brain

organization is currently not known. This question is important

from a developmental perspective because the brain undergoes

vast changes in structural connectivity during adolescence [9].

We hypothesized that the global functional organization of brain

networks would be characterized by nonrandom, efficient, small-

world characteristics in both subject groups, but that young-

adults would show higher small-worldness compared to children,

on the basis of previous neurobiological studies in humans and

animals suggesting that developmental changes improve efficien-

cy of information processing in the brain [42–44]. We further

predicted that local organization patterns would be significantly

different in children, reflecting a process of continuing structural

maturation during the period between childhood and young

adolescence. To further characterize developmental changes in

the global and local functional organization of brain networks,

we used the parcellation scheme of Mesulam [45] to examine

functional organization in five key subdivisions: primary sensory,

subcortical, limbic, paralimbic, and association areas. Addition-

ally, developmental changes in the connectivity between these

subdivisions (hereafter referred to as interregional connectivity in

the manuscript) were examined. Lastly, to characterize the

underlying developmental processes that produce these changes

in the global and local functional organization of large-scale

brain networks, we examined changes in functional connectivity

as a function of DTI-based wiring distance between distinct

brain regions. The formation of brain networks during

development is thought to arise from a dual process of

integration and segregation [27,46–49]. Accordingly, we inves-

tigated whether there is in vivo developmental evidence for the

emergence of functional segregation and integration in large-

scale brain networks.

Results

Participants
Demographic and cognitive profile data for the child and

young-adult groups are shown in Table 1. The two groups were

well-matched and did not differ in IQ (p = 0.93) or gender

(p = 0.75).

Analyses of Small-World Metrics at Different Frequency
Scales

We first examined graph-theoretic metrics obtained for the

functional brain networks constructed by thresholding (threshold

values ranged from 0.01 to 0.99, with an increment of 0.01) the

Author Summary

The disruption of normal brain organization in humans is
believed to underlie a number of behavioral conditions,
such as autism spectrum disorders (ASD) and attention-
deficit/hyperactivity disorder (ADHD). To gain insight into
how normal brain organization develops, we mapped
functional brain connectivity in children and young adults,
and used a network analysis to characterize and compare
the organization of brain networks. Comparison of
network properties revealed that while children and young
adults’ brains have similar organization at the global level,
there were several key differences in connectivity. For
example, children’s brains had less of a hierarchical
organization than young-adults. Most importantly, we
show that the dynamic process of over-connectivity
followed by pruning, which rewires connectivity at the
neuronal level, also operates at the systems level,
reconfiguring and rebalancing subcortical and paralimbic
connectivity in the developing brain. Our findings dem-
onstrate the utility of using network analyses of multi-
modal brain connectivity to study maturation of brain
circuits, and suggest new avenues for future research on
neurodevelopmental disorders such as ASD and ADHD.

Large-Scale Brain Network Development
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wavelet correlation matrix at three different frequency scales.

Scale 1 encompassed 0.13–0.25 Hz, scale 2 encompassed 0.06–

0.12 Hz, and scale 3 encompassed 0.01–0.05 Hz. As shown in

Figure 1, for both the children and young-adult groups, the mean

degree—the average number of edges incident on a node

belonging to the network—was highest at scale 3 for a wide range

of correlation thresholds (0.01,R,0.8). The mean characteristic

path length (l) for both groups, when controlled for the degree of

the network (1,l,1.57), showed similar trends at all three scales.

The clustering coefficient (c) for both groups, when controlled for

the degree of the network, was highest at scale 3. Due to higher

mean c values, the small-world measure s (c/l), when controlled

for degree of the network, was highest at scale 3 for both groups.

The small-world property (s.1) showed a monotonic increase in

small-worldness as the threshold increased and the degree

decreased. s values for higher correlation thresholds are difficult

to interpret because at higher threshold values, graphs of

functional brain networks have fewer edges (smaller degree) and

tend to split into isolated subgraphs. Graph metrics such as

clustering coefficient, characteristic path length, and small-world

property do not meaningfully characterize network structures that

are not composed of a single, large group of interconnected nodes

[30].

Since functional connectivity and small-world properties were

highest (p,0.01, Kolmogorov-Smirnov test) at lower-frequencies

(scale 3: 0.01– 0.05 Hz) for both children and young-adults, we

focus on this frequency interval in subsequent analyses, consistent

with other recent studies [34,35].

Comparison of Small-World Metrics in Children and
Young-Adults

We examined path length (l), clustering coefficient (c), and

small-worldness (s) values in the two groups in scale 3 (0.01–

0.05 Hz). For group comparisons, we controlled for the average

correlation value (r), as it varies considerably across individuals.

Thus, for a given correlation threshold, the number of edges in the

graph are likely to be different, resulting in different l and c
values. To ensure that graphs in both groups had the same

number of edges, individual correlation matrices were thresholded

such that the resultant graph had on average K9 edges per node.

K9 is the average number of edges per node in the graph obtained

by thresholding individual correlation matrices with R = ri (ri is the

average correlation value for subject i, i = 1–45), averaged across

subjects. This procedure not only ensured that both groups had

the same number of edges, but also selected a conservative K9 such

that the networks generated were not disconnected. This is

particularly important for network characterization because graph

metrics are not interpretable when the network is disconnected.

The value of K9 selected according to this procedure was 48 for

both the groups. Thus, every network generated by using this

degree preserving threshold will have exactly 2,160 ( = 48690/2)

edges, which is equivalent to a network cost of 0.54 ( = 2,160/

4,005). Network cost is defined and calculated as the ratio of

number of edges in the network to the maximum possible edges in

the network [50]. Mean l, mean c, and mean s values for the

networks of each group were derived by thresholding the

correlation matrices such that the network has on average K9

( = 48) edges per node. Using this approach, no significant

differences in the mean l, c, and s values were observed between

children and young-adults.

Comparison of Global Efficiency of Whole-Brain
Functional Connectivity in Children and Young-Adults

Global efficiency, the harmonic mean of the minimum path

length between each pair of nodes, is an alternative measure of

connectivity of the network. This measure overcomes some of

the limitations of the original measure of network connectivity,

characteristic path length, which is susceptible to disconnected

nodes. We examined global efficiency (Eglobal) values obtained

for the functional brain networks constructed by thresholding

(threshold values ranged from 0.01 to 0.99 with an increment of

0.01), the wavelet correlation matrix at each of the three scales.

The mean Eglobal for both groups, when controlled for the

degree of the network, was low (0.7,Eglobal,1) and showed

similar trends at all three scales. In the frequency interval 0.01–

0.05 Hz (scale 3), mean Eglobal values for the two groups,

obtained by thresholding the correlation matrices such that the

network has on average K9 ( = 48) edges per node, which is

equivalent to a network cost of 0.54 were compared. No

significant differences in the mean Eglobal values were observed

between the two groups.

Classification Analysis of Whole-Brain Functional
Connectivity in Children and Young-Adults

We examined differences in whole-brain functional connectivity

patterns between children and young-adults. The connectivity

patterns,- correlation values of 4,005 pairs of anatomical regions,

were used as features in a support vector machine (SVM) classifier

(see Text S1). We found that connectivity patterns in children

could be distinguished from those in young-adults with accuracies

ranging from 89% to 91%, with the highest accuracy in scale 3 (see

Table 2). This suggests that functional connectivity patterns at the

whole-brain level in children are significantly different from those

in young-adults. We report below the nature of these develop-

mental changes in the context of hierarchical and regional

organization of brain connectivity.

Comparison of Hierarchical Organization of Whole-Brain
Functional Connectivity in Children and Young-Adults

Hierarchy (b) is a measure of the relationship between the

clustering coefficient and number of nodes in the network.

Networks with higher hierarchy values are characterized by high

degree nodes, which exhibit low clustering, and vice versa. These

hierarchical networks contain small densely connected clusters;

these clusters combine to form large less-interconnected clusters,

which combine again to form larger lesser-interconnected clusters

[51]. We examined b values obtained for the functional brain

networks constructed by thresholding (threshold values ranged

from 0.01 to 0.99 with an increment of 0.01) the wavelet correlation

matrix at scale 3 (0.01–0.05 Hz). As shown in Figure 2A, the b
values for both groups, when controlled for the degree of the

network, were significantly higher (27.5,b,2.5) than b values

Table 1. Participant characteristics.

Measure Children (n = 23) Young-adults (n = 22)

Age 7.95a (range: 7–9) 20.40a (range: 19–22)

Gender 10 males, 13 females 11 males, 11 females

IQ 112 (range: 88–137) 112 (range: 97–137)

Years of education 2.52a (range: 2–3) 14.5a (range: 13–16)

Age and years of education, but not IQ nor gender, are significantly different in
young-adults compared with children.
aDenotes significant differences between groups.
doi:10.1371/journal.pbio.1000157.t001

Large-Scale Brain Network Development
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obtained from random networks (p,0.01). Furthermore, b values

in the young-adult group were significantly higher than in the child

group (p,0.001, Kolmogorov-Smirnov Test). The mean b value

for the two groups, obtained by thresholding the correlation

matrices such that the network has on average K9 ( = 48) edges per

node, which is equivalent to a network cost of 0.54, was

significantly higher in young-adults than in children (p,0.01), as

shown in Figure 2B.

Figure 1. Developmental changes in whole-brain functional connectivity network metrics. Graph metrics: degree, path length (l),
clustering coefficient (c), small-worldness (s), for children (D) and young-adults (#) at three frequency intervals. (A) For both groups, the mean
degree, a measure of network connectivity, is highest at scale 3 for a wide range of correlation thresholds (0.01,R,0.8). (B) The mean characteristic
path length (l) is low (1,l,1.57) and shows similar trends at all the scales. (C) The clustering coefficient (c) for both groups is highest at scale 3. (D)
Due to higher mean c values, the small-world measure s (c/l) is highest at scale 3 for both groups. s showed a linear increase in small-worldness as
the threshold increased and the degree decreased. s values for higher correlation thresholds are hard to interpret as at higher threshold values
graphs of functional brain networks have fewer edges (smaller degree) and tend to split into isolated subgraphs. At each of the three scales, no
significant differences in the degree, path length, clustering coefficient, and small-worldness values, for a range of correlation thresholds, were
observed between children and young-adults. Scale 1 (0.13–0.25 Hz) is shown in red, scale 2 (0.06–0.12 Hz) is in blue, and scale 3 (0.01–0.05 Hz) is in
green.
doi:10.1371/journal.pbio.1000157.g001

Large-Scale Brain Network Development
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Comparison of Regional Differences in Network
Organization and Connectivity in Children and Young-
Adults

We then examined regional differences in network organization

of five major divisions—association, limbic, paralimbic, primary,

and subcortical areas [45]—with the rest of the brain. Figure 3

shows a plot of degree, path length (l), efficiency, and clustering

coefficient (c) values for each of the five areas, for children and

young-adults, as a function of the correlation threshold. In the

subcortical division, the fitted growth curve of degree and

efficiency values was significantly higher (p,0.01) while the curve

of l values was significantly lower (p,0.01) in children, compared

to young-adults, reflecting higher connectivity, higher efficiency

values, and lower path length for a range of threshold values from

0.1 to 0.6. A similar analysis in the association, limbic, paralimbic,

and primary sensory areas, revealed no significant differences in

the degree, l, efficiency, and c values. Across the five divisions, no

significant differences in the degree, l, efficiency, and c values

were observed for correlation threshold values .0.6, mainly due to

the large variance observed at higher threshold values.

We next examined the degree, l, efficiency, and c values for

each of the 90 anatomical ROIs, for the two groups. Consistent

with the above findings, a significant number of subcortical areas

(six out of eight; p,0.01) showed differences between the two

groups in at least one of the four metrics (degree, l, efficiency, and

c), whereas only two out of eight regions in the primary sensory, 17

out of 44 regions in association, three out of six regions in limbic,

and 12 out of 24 regions in the paralimbic areas, showed

differences (see Table S1 for regions that showed significant

differences in degree, l, efficiency, and c values between the two

groups).

We next examined connectivity differences within each of the

five functional subdivisions. Connectivity differences here reflect

the change in the strength of interregional correlations in

spontaneous blood oxygen level-dependent fluctuations. The

functional connectivity within the paralimbic areas was signifi-

cantly higher in the young-adults, compared to children (p,0.001;

p,0.01, false discovery rate (FDR)-corrected for multiple

comparisons). There were no differences in functional connectivity

within the association, limbic, primary, and subcortical areas.

Interregional Functional Connectivity Changes with
Development

To further investigate regional differences in network organi-

zation, we examined interregional connectivity differences be-

tween the two groups. We found that the subcortical areas had

increased connectivity with the primary sensory, association, and

paralimbic areas in children, compared to young-adults. Young-

adults, on the other hand, had increased connectivity between

paralimbic and association areas, between paralimbic and limbic

areas, and between limbic and association areas (p,0.001;

p,0.01, FDR-corrected for multiple comparisons) (Figure 4A).

The classification analysis of interregional connectivity showed

complementary set of findings (see Text S1 for details). The

interregional connectivity patterns in children could be distin-

guished from those in young-adults with accuracies ranging from

Table 2. Whole-brain functional connectivity patterns in
children and young-adults are significantly different.

Scale Frequency Range (Hz) Accuracy Percent

1 0.13–0.25 88.89

2 0.06–0.12 88.89

3 0.01–0.05 91.11

A SVM based classifier was used to examine differences in whole-brain
functional connectivity patterns between children and young-adults.
Connectivity patterns were classified with high accuracy and accuracy was
highest in scale 3, which corresponds to low-frequency fluctuations (0.01–
0.05 Hz). Scale 1: 0.13–0.25 Hz and scale 2: 0.06–0.12 Hz.
doi:10.1371/journal.pbio.1000157.t002

Figure 2. Developmental changes in hierarchical organization of whole-brain functional connectivity network. (A) Hierarchy measure
(b), for children (blue) and young-adults (red) at scale 3 (0.01– 0.05 Hz). The b values for both groups are high (b z-scores ranged from 27.5 to 2.5),
and are significantly greater than the b values obtained from random networks (brandom z-scores ranged from 21.96 to 1.96, indicated in gray). (B)
Mean b values were significantly higher in young-adults (indicated by **) compared to children (p,0.01). Error bars represent standard error.
doi:10.1371/journal.pbio.1000157.g002

Large-Scale Brain Network Development
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44% to 91%, with high accuracy values observed for connectivity

patterns between subcortical areas and the primary sensory (91%),

association (90%) and paralimbic (83%) areas, and between

paralimbic and association (80%) areas (see Table 3). Figure 4B

shows a graphical representation of developmental differences in

functional connectivity along the posterior-anterior and ventral-

dorsal axes, highlighting greater subcortical connectivity in

children and greater paralimbic connectivity in young-adults.

Figure S1 shows separate group-averaged functional connectivity

matrices for children and young-adults, and Text S1 provides

information about interparticipant variability in these matrices.

Developmental Changes in Functional Connectivity with
Wiring Distance

Lastly, we investigated whether development is associated with

simultaneous emergence of functional segregation and integration

at the whole-brain level. For each pair of ROIs we first computed

the wiring distance using DTI-based fiber tracking. We computed

the fiber length in a common Montreal Neurological Institute

(MNI) space rather than individual subject space to rule out any

potential confounding effects of developmental changes in

interregional fiber length on our findings. We then examined

developmental changes in functional connectivity in relation to the

wiring distance between them. We found that functional

connectivity between more proximal anatomical regions were

significantly higher in children, whereas functional connectivity

between more distal anatomical regions were significantly higher

in young-adults (p,0.0001), as shown in Figure 5. This suggests a

pattern of higher short-range functional segregation in children

and higher long-range functional integration in young-adults.

To further examine the robustness of our findings, we repeated

our functional connectivity versus wiring distance analysis using

Euclidean distance instead of DTI-based wiring distance. The

results were highly consistent with those reported above: functional

connectivity between more proximal anatomical regions in

Euclidean space was significantly higher in children, whereas

functional connectivity between more distal anatomical regions in

Euclidean space was significantly higher in young-adults

(p,0.0001).

Discussion

To our knowledge, this is the first study to characterize the

organization and development of large-scale human brain

networks in children. We used graph-theoretical metrics to

Figure 3. Developmental changes in network metrics for five major functional divisions of the human brain. Graph metrics—degree,
path length (l), efficiency, clustering coefficient (c), within each of the five divisions: association, limbic, paralimbic, primary, and subcortical—are
shown for children (blue) and young-adults (red), as a function of the correlation threshold. In the subcortical division, for threshold values from 0.1 to
0.6, degree and efficiency values were significantly higher and l values significantly lower in children, compared to young-adults (p,0.01, indicated
by **), while for the association, limbic, paralimbic, and primary sensory areas, no significant differences in the degree, l, efficiency, and c values were
observed at any correlation threshold.
doi:10.1371/journal.pbio.1000157.g003

Large-Scale Brain Network Development
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measure and characterize global and local functional brain

organization in children and young-adults. The main findings of

our study are: (1) large-scale brain networks in 7–9-y-old children

showed similar small-world, nonrandom, functional organization

at the global level, as young-adults; (2) compared to young-adults,

functional brain networks in children showed significantly lower

levels of hierarchical organization; (3) children and young-adults

had significantly different interregional connectivity patterns, more

specifically stronger subcortical-cortical and weaker cortico-

cortical connectivity in children; and (4) the development of

large-scale brain connectivity involves functional segregation and

integration, characterized by a shift from stronger short-range

Figure 4. Developmental changes in interregional functional connectivity. (A) Children had significantly greater subcortical-primary
sensory, subcortical-association, subcortical-paralimbic, and lower paralimbic-association, paralimbic-limbic, association-limbic connectivity than
young-adults (p,0.01, indicated by **). Error bars represent standard error. (B) Graphical representation of developmental changes in functional
connectivity along the posterior-anterior and ventral-dorsal axes, highlighting higher subcortical connectivity (subcortical nodes are shown in green)
and lower paralimbic connectivity (paralimbic nodes are shown in gold) in children, compared to young-adults. Brain regions are plotted using the y
and z coordinates of their centroids (in mm) in the MNI space. 430 pairs of anatomical regions showed significantly higher correlations in children and
321 pairs showed significantly higher correlations in young-adults (p,0.005, FDR corrected). For illustration purposes, the plot shows differential
connectivity that were most significant, 105 pairs higher in children (indicated in red) and 53 higher in young-adults (indicated in blue), (p,0.0001,
FDR corrected).
doi:10.1371/journal.pbio.1000157.g004

Large-Scale Brain Network Development
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connections in children to stronger long-range connections in

young-adults. Collectively, these and other findings reported here

provide new insights into the development of large-scale brain

organization in children.

Small-World Functional Organization in Children
A small-world network is characterized by a high clustering

coefficient and a low characteristic path length. Functional brain

networks in both children and young-adults showed small-world

properties (schildren.1, syoung-adults.1) suggesting the presence of

subnetworks of densely connected nodes, mostly connected by a

short path. Similar findings were observed when clustering

coefficient and global efficiency were used as alternative measures

of small-worldness.

Small-world characterization is well-suited for analyzing

functional brain networks at the systems level because these

networks are complex and optimally connected to minimize

information processing costs [36,52]. Functional connectivity

networks of the human brain constructed from EEG as well as

MEG data have also been shown to have small-world architecture

[38,39]. Salvador et al. [53] examined connectivity in task-free

functional MRI data with the same 90 ROI parcellation scheme

Table 3. Interregional functional connectivity patterns in
children and young-adults are significantly different.

Interregional Functional Connectivity Accuracy Percent

Subcortical – Primary sensory 91

Subcortical - Association 90

Subcortical – Paralimbic 83

Paralimbic – Association 80

Paralimbic – Primary sensory 78

Association – Primary sensory 78

Association – Limbic 78

Limbic – Paralimbic 76

Limbic – Subcortical 64

Limbic – Primary sensory 44

A SVM classifier was used to examine differences in interregional functional
connectivity patterns between children and young-adults in scale 3. Pairs of
regions are rank-ordered by classification rates. Classification accuracy ranged
from 44% to 91%.
doi:10.1371/journal.pbio.1000157.t003

Figure 5. Developmental changes in functional connectivity with DTI-based wiring distance. The wiring distance (d) of all connections which
differed significantly between the children and young-adults is plotted against developmental change in functional correlation values (Dr) of those
connections. Correlation values that were higher in children, compared to young-adults, are displayed in red, and the values that were higher in young-
adults, compared to children, are displayed in blue. The mean wiring distance of the connections that showed higher correlation values in children (mean
Dr = 20.2), compared to young-adults, was 54.12 mm; the mean wiring distance of the connections that showed higher correlation values in young-
adults (mean Dr = 0.1), compared to children, was 63.09 mm. The correlation values of short-range connections were significantly greater in children
whereas young-adults showed stronger long-range connectivity (p,0.0001). Wiring distances were computed using DTI-based fiber tracking.
doi:10.1371/journal.pbio.1000157.g005
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used in our study and they reported small-world architecture in

this network. This finding was replicated by Achard et al., who

also reported that small-world properties were salient in the low

frequency interval 0.03–0.06 Hz [35] in adults (ages 25–35 y), and

by Supekar et al. in older adults (ages 37–77 y) [34]. These

findings, primarily derived from functional data obtained from

middle-age to older adults, suggest that the functional organization

of the brain has a small-world architecture, a characteristic that

may assist in robust and dynamic information processing.

Our finding that large-scale brain networks in children showed

small-world properties that were very similar to young-adults,

together with the above observations, suggests that key aspects of

functional brain organization are conserved throughout the

developmental process—from early childhood to young adulthood

and into older adulthood. Critically, despite the fact that the brain

undergoes vast structural reorganization at the neuronal level in

the form of myelination and synaptic pruning throughout

development, key global properties of functional organization

appear to be conserved.

Functional Brain Connectivity Patterns in Children and
Young-Adults Are Significantly Different

Notwithstanding similarities in global, whole-brain, small-world

network properties, functional connectivity patterns in children

were significantly different from those in young-adults. SVM-

based pattern classification analysis showed that connectivity

patterns in children could be distinguished from those in young-

adults with an accuracy of over 90%. Accuracy was highest (91%)

for connectivity patterns in the low frequency interval (scale 3;

0.01–0.05 Hz). Previous studies have reported that resting-state

functional connectivity is most robust at frequencies below 0.1 Hz

[20,54,55] and that these low frequency fMRI fluctuations are

related to interregional coupling of local field potentials in the

gamma band [56,57]. Overall, these findings suggest that observed

developmental changes in the functional connectivity measured by

fMRI resting state signals are likely to reflect underlying

differences in coupling of neuronal signals. We discuss below the

nature of developmental changes in the context of hierarchical and

regional organization of brain connectivity.

Development of Functional Hierarchical Organization
Our data provide new evidence that large-scale brain networks

in children and young-adults differ in their hierarchical organiza-

tion. Children showed significantly lower (p,0.001) levels of

hierarchical organization than young-adults. Hierarchical net-

works are characterized by the presence of small densely

connected clusters; these clusters combine to form large less-

interconnected clusters, which combine again to form larger lesser-

interconnected clusters [51]. Hierarchical organization has been

discovered in the World Wide Web and several biological

networks [40,58,59]. In a recent study, Bassett and colleagues

reported significant levels of hierarchical organization in anatom-

ical human brain networks based on interregional correlations in

cortical thickness [40]. Our study extends these findings to the

realm of hierarchical organization in functional human brain

networks in not only young-adults but also in children.

Hierarchical networks are optimally connected to support top-

down relationships between nodes and minimize wiring costs, but

are vulnerable to attack on hubs [51]. The presence of hierarchical

organization in the large-scale brain networks of children and

young-adults suggests efficient functional connectivity patterns

within these networks at the expense of higher vulnerability to

attacks. Lower levels of hierarchical organization in children may

therefore be protective to such vulnerability, allowing for more

flexibility in network reconfiguration on the basis of individual

differences in cognitive experience and reserve. How modularity

and hierarchy emerge in functionally meaningful ways is an

important topic for future research, but the important finding here

is that quantitative measures of hierarchy can be used to examine

the emergence of functional hierarchy in the developing brain.

Development of Interregional Functional Connectivity
We used the parcellation scheme of Mesulam to examine

developmental changes in the functional connectivity of five major

functional divisions of the human brain. Briefly, the primary

sensory division consists of unimodal regions for processing visual,

auditory, somatosensory, olfactory, and gustatory signals. The

subcortical division includes deep brain nuclei, notably the basal

ganglia and thalamus, and the association division comprises

higher order multimodal regions, including the lateral prefrontal,

parietal, and temporal cortices. The paralimbic division consists of

the insula, anterior cingulate cortex, posterior cingulate cortex and

the orbitofrontal cortex, and the limbic division includes the

amygdala and hippocampus. Together, these divisions map the

external world into brains’ internal sensory, attentional, mnemon-

ic, emotional, and motivational systems [60].

Graph-theoretical analysis identified subcortical regions as a

major locus of between-group differences in brain connectivity.

More specifically, subcortical connectivity was characterized by

higher degree, lower path length and higher efficiency in children

(Figure 3). Node wise analysis showed that the caudate, putamen,

and thalamus all showed higher degree, lower path length, and

higher efficiency in children. The globus pallidus was the only

subcortical region that did not differ in these network metrics

between children and young-adults. Further analysis of functional

connectivity with the other four subdivisions revealed that

subcortical areas were more strongly correlated with primary

sensory, association, and paralimbic areas in children, as shown in

Figure 4A. These results suggest that subcortical-cortical connec-

tions are both more profuse and stronger in children and that the

functional development of subcortical connectivity is characterized

by both changes in wiring and strength of connections.

We also detected significant differences in cortical connectivity

but in this case the pattern of age-related differences was reversed,

with children showing significantly weaker connectivity between

paralimbic, association, and limbic areas (Figure 4A). Graph-

theoretical measures of degree, efficiency, and path length of the

four cortical subdivisions did not differ between the two groups

(Figure 3). This suggests that key aspects of cortico-cortical wiring

are similar in children and young-adults but the strength of the

connections is weaker in children.

These developmental changes converge on and extend findings

from structural neuroimaging studies that have shown protracted

age-related structural differences in the regional gray- and white-

matter [6–9,15]. Our findings of differences in subcortical

connectivity is consistent with reports that these areas undergo

massive structural rewiring characterized by progressive myelina-

tion of axons that emanate from these regions followed by

extension of these myelinated axons into the cortex during

development [11,15]. The later teen years, which span an interval

in between childhood and young-adulthood is a period of

significant brain maturation [61]. In particular, caudate, putamen,

and thalamus regions of the subcortical division show some of the

largest changes in fractional anisotropy of white-matter tracts,

increasing almost 30% to 50% from 5 to 25 years of age. In

contrast, major cortico-cortico tracts show a more modest increase

of 8% to 20% [15]. Taken together, these results suggest that

changes in interregional functional connectivity parallel changes in
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maturation of white-matter tracts between childhood and young-

adulthood. Critically, our data provide novel evidence for a

process of rewiring and pruning of subcortical-cortical connectivity

accompanied by increased cortico-cortical connectivity at the

functional level.

Subcortical areas, comprising the basal ganglia and the

thalamus, are important for adaptive processing of distributed

information in a manner that facilitates the transformation of

sensory input and cognitive operations into behavior [62]. More

specifically, the basal ganglia link signals in distinct functional

networks during different phases of cognitive information

processing [63]. Neurophysiological models and anatomical

tracing studies have provided evidence for parallel motor, limbic,

and prefrontal cortico-basal-ganglia loops [64,65], which funnel

large-scale cortical activity into behaviorally relevant motor

output. In humans, these circuits are characterized by segregated

and overlapping connectivity patterns and a complex pattern of

hierarchically organized frontal inputs [66,67]. These patterns

support the parallel flow of cortical signals inputs into the basal

ganglia, where multiple reward related signals are integrated in

ways that facilitate incentive learning over short time scales and

habit formation over long time scales [68,69]. There have been

few studies of how these loops develop in children, but the pattern

of changes in subcortical-cortical functional connectivity observed

in our study suggest a process of pruning at the systems-level. This

form of pruning is characterized by weakening of specific

subcortical links, leading to longer path lengths similar to those

seen in young-adults. Exactly how these links result in the

formation of parallel and integrative loops, which support large-

scale neuronal networks for learning and memory [63,70] remains

to be investigated.

Changes in paralimbic connectivity were the cornerstone of

developing cortico-cortico connectivity. Paralimbic areas play a

major role in detection of salient environmental events [71], in

facilitating flexible behaviors in response to risk, reward, and

punishment [72,73], and in goal directed behavior [74].

Converging evidence from a number of brain imaging studies

across several task domains suggests that the insula and the

anterior cingulate cortex respond to the degree of subjective

salience, whether cognitive, homeostatic, or emotional [75,76].

These paralimbic areas play a causal role in activating attentional

and memory systems within association areas to facilitate

controlled processing of stimuli during cognitively demanding

tasks [71]. Paralimbic and association areas also moderate

emotional reactivity to stimuli in limbic areas [77,78]. These core

motivational and regulatory processes are known to undergo

significant changes during adolescence [79], a time when

coordinated interaction of emotion, reasoning, and decision-

making becomes increasingly important [80,81]. The tighter

integration of paralimbic with association and limbic areas

revealed by our study may underlie the large-scale functional

changes that facilitate this critical developmental process.

Short- and Long-Range Functional Connectivity in
Children Compared to Young-Adults

Our analysis of functional connectivity changes with wiring

distance provides strong evidence that development is character-

ized by simultaneous reduction of short-range connectivity and

strengthening of long-range connectivity. This suggests a process

of greater functional segregation in children and greater functional

integration in young-adults at the whole-brain level, not just in

circumscribed nodes of the attentional control [27] and default

node networks [28]. In contrast to the 90 cortical and subcortical

nodes, based on whole-brain parcellation [82], used in our study,

Fair and colleagues [27,28] focused their analysis on 39 distinct

cortical regions involved in task-control and default-mode

networks. Whereas the lack of correspondence between specific

brain regions in the two studies makes a detailed comparison

difficult, our findings are, nevertheless, consistent with distributed

changes in these two large-scale networks reported by Fair and

colleagues. Methodologically, our studies are an improvement

over prior studies because we used continuous resting state fMRI

data, rather than resting state data extracted from intertask rest

periods, uncontaminated by cognitive tasks. Furthermore, our

findings indicate that simultaneous weakening of short-range

connections and strengthening of long-range connections changes

with actual anatomical (physical) distance, derived from DTI data,

rather than the Euclidean distance, between nodes. Our findings

provide new and more direct evidence that dual changes in

functional integration and segregation with wiring distance reflects

a general developmental principle that operates at the level of the

whole brain.

Two neurobiological processes are likely to contribute directly

to these observed effects. One, systematic pruning of local

connections with age are likely to result in weakening of local

connections and formation of more localized and specialized

processing nodes. These changes are known to occur prenatally, in

childhood and in adolescence [83]. In parallel, increased

myelination of axonal fiber tracks with age, also contribute to

strengthening of long-range connectivity [84]. Both these processes

are likely to be influenced by experience dependent Hebbian

plasticity, leading to selective strengthening and weakening of

connections [85].

This selective strengthening and weakening of connections may

be additionally influenced by developmental changes in interre-

gional wiring distance. For example, on the basis of previous

findings of an inverse relationship between strength of functional

connectivity and wiring distance in adults [53,86], the observed

age-related decrease in subcortical-cortical functional connectivity

may be due to age-related increases in subcortical-cortical wiring

distance. In our analysis, however, we controlled for any

confounding influences of changes in physical wiring distance by

computing functional connectivity and wiring distance in a

common MNI space. Further studies that examine both functional

connectivity and wiring distance in native image space are needed

in order to investigate the influence of age-related changes in

wiring distance on the observed age-related changes in functional

connectivity. More generally, the manner in which these structural

and functional changes in connectivity influence the development

of large-scale functional organization in the human brain is an

important topic for future research. Recent studies do, however,

suggest that intrinsic resting-state functional connectivity in the

human brain reflects anatomical connectivity at both short and

long spatial scales [87,88]. Taken together, these findings suggest

that the development of large-scale functional connectivity is

related to ongoing developmental changes in structural connec-

tivity.

Conclusion
Our findings suggest that large-scale brain networks derived

from task-free fMRI have a robust functional organization in 7–9-

y-old children. Importantly, we show that the dynamic process of

over-connectivity followed by pruning, which rewires connectivity

at the neuronal level [89], also operates at the systems level and

helps reconfigure and rebalance subcortical and paralimbic

connectivity in the developing brain. Our study demonstrates

the usefulness of network analysis of functional connectivity in

elucidating the principles underlying brain maturation. Further-
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more, our study shows how quantitative analysis of anatomical

connectivity, and in particular the computation of wiring distance

between brain regions, allows us to link changes in functional

networks to the maturation of white matter tracts. Such

multimodal analysis of structural and functional brain connectivity

will prove useful in helping us better understand the network

architecture that shapes and constrains cognitive development.

More generally, our findings provide a framework for

examining how fundamental aspects of large-scale organization

are disrupted in neurodevelopmental disorders. Previous work

has suggested that resting-state functional connectivity can be

used to assess disrupted connectivity between specific brain

regions that are relevant to the disease-specific pathology in

neurodevelopmental disorders such as autism spectrum disorders

[90], and attention-deficit/hyperactivity disorder [91], disorders

that are thought to be characterized by disruptions in synaptic

pruning and myelination at the neuronal level [92–94]. The

methods and results developed here provide a template for a

more detailed investigation of disruptions in the large-scale

organization of brain networks in these and other developmental

brain disorders.

Materials and Methods

Participants
Twenty-three children and 22 IQ-matched young-adult subjects

participated in this study after giving written, informed consent.

For those subjects who were unable to give informed consent,

written, informed consent was obtained from their legal guardian.

The study protocol was approved by the Stanford University

Institutional Review Board. The children subjects (10 males, 13

females) ranged in age from 7 to 9 y (mean age 7.95 y) with an IQ

range of 88 to 137 (mean IQ: 112); the young-adult subjects (11

males, 11 females) ranged in age from 19 to 22 y (mean age 20.4 y)

with an IQ range of 97 to 137 (mean IQ: 112). The subjects were

recruited locally—children from local schools and young-adults

from Stanford University and neighboring community colleges.

Eleven of 23 children subjects were 2nd graders and the rest of the

children subjects were 3rd graders; the young-adult subjects had

13 to 16 y of education (mean years of education 14.5).

Data Acquisition
For the task-free scan, subjects were instructed to keep their eyes

closed and try not to move for the duration of the 8-min scan.

Functional Images were acquired on a 3T GE Signa scanner

(General Electric) using a custom-built head coil. Head movement

was minimized during scanning by a comfortable custom-built

restraint. A total of 29 axial slices (4.0 mm thickness, 0.5 mm skip)

parallel to the AC-PC line and covering the whole brain were

imaged with a temporal resolution of 2 s using a T2* weighted

gradient echo spiral in-out pulse sequence [95] with the following

parameters: TR = 2,000 msec, TE = 30 msec, flip angle = 80

degrees, 1 interleave. The field of view was 20 cm, and the matrix

size was 64664, providing an in-plane spatial resolution of

3.125 mm. To reduce blurring and signal loss arising from field

inhomogeneities, an automated high-order shimming method

based on spiral acquisitions was used before acquiring functional

MRI scans. A high resolution T1-weighted spoiled grass gradient

recalled (SPGR) inversion recovery 3D MRI sequence was

acquired to facilitate anatomical localization of functional data.

The following parameters were used: TI = 300 msec,

TR = 8.4 msec; TE = 1.8 msec; flip angle = 15 degrees; 22 cm

field of view; 132 slices in coronal plane; 2566192 matrix; 2 NEX,

acquired resolution = 1.560.961.1 mm. Structural and functional

images were acquired in the same scan session.

Data Preprocessing
Data were preprocessed using statistical parametric mapping

(SPM5) software (http://fil.ion.ucl.ac.uk/spm). The first eight

image acquisitions of the task-free functional time series were

discarded to allow for stabilization of the MR signal. Each of the

remaining 232 volumes underwent the following preprocessing

steps: realignment, normalization to the MNI template, and

smoothing carried out using a 4-mm full-width half maximum

Gaussian kernel to decrease spatial noise. Excessive motion,

defined as greater than 3.5 mm of translation or 3.5 degrees of

rotation in any plane, was not present in any of the task-free scans.

Anatomical Parcellation
The preprocessed task-free functional MRI datasets were

parcellated into 90 cortical and subcortical regions using

anatomical templates defined by Tzourio-Mazoyer et al. [82]. A

task-free fMRI timeseries was computed for each of the 90 regions

by averaging all voxels within each region at each time point in the

time series, resulting in 232 time points for each of the 90

anatomical regions of interest. These regional fMRI time series

were then used to construct a 90 node whole-brain task-free

functional connectivity network for each subject.

Construction of Large-Scale Whole-Brain Functional
Connectivity Network

Wavelet analysis was used to construct correlation matrices

from the regional fMRI time series data. These matrices described

frequency-dependent correlations, a measure of functional con-

nectivity, between spatially distinct brain regions. Correlation

matrices were then thresholded to generate a whole-brain

functional connectivity network.

Wavelets are mathematical functions that transform the input

signal into different frequency components [96]. Wavelets

methods have previously been applied in the analysis of task-

based as well as task-free fMRI signal [35,97]. In our study, we

applied a maximum overlap discrete wavelet transform

(MODWT) to each of the 90 regional time series from each

subject to obtain the contributing signal in the following three

frequency components: scale 1 (0.13–0.25 Hz), scale 2 (0.06–

0.12 Hz), and scale 3 (0.01–0.05 Hz). To account for a relatively

small number (232) of data points per time series for low frequency

correlation analysis, the vector representing the time series beyond

its boundaries (,0 and .232) was assumed to be a symmetric

reflection of itself. At each of the three scales, wavelet correlations

between signals in the 90 anatomical regions were determined by

computing the correlation coefficient between the transformed

signals at that scale.

For each subject, a 90-node, scale-specific, undirected graph of

the functional connectivity network was constructed by threshold-

ing the wavelet correlation matrix computed at that scale. If the

wavelet correlation value between two anatomical regions

represented by nodes i and j in the network exceeded a threshold,

then an edge was drawn between node i and node j. There is

currently no formal consensus regarding threshold selection, so we

computed networks for threshold values from 0.01 to 0.99 with an

increment of 0.01. Once a whole-brain functional connectivity

network was constructed from the correlation matrix, we

characterized this network using graph theoretic metrics of global

and local brain organization including small-worldness and

hierarchy.
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Small-World Analysis of the Whole-Brain Functional
Connectivity

Small-world properties of a network are described by the

clustering coefficient and the characteristic path length of the

network. The clustering coefficient and characteristic path length

of functional brain networks generated from the task-free fMRI

data obtained from 23 children and 22 young-adults were

computed. The clustering coefficient of every node was computed

as the ratio of the number of connections between its neighbors

divided by the maximum possible connections between its

neighbors. The clustering coefficient (C) of the network was

calculated as the mean of the clustering coefficients of all the nodes

in the network. The mean minimum path length of a node was

computed as the average of minimum distances from that node to

all the remaining nodes in the network. The characteristic path

length (L) of the network was the average of the mean minimum

path lengths of all the nodes in the network. The clustering

coefficient and path length of nodes completely disconnected with

the network were set as 0 and Inf respectively, and these nodes

were excluded while computing C and L. To evaluate the network

for small-world properties, we compared the clustering coefficient

and the characteristic path length of the network with corre-

sponding values (Cran, Lran) obtained and averaged across 1,000

random networks with the same number of nodes and degree

distribution [98]. The degree of every node (a measure of its

connectivity) was calculated by counting the number of edges

incident on that node. The mean degree of the network was the

average of the degree of all the nodes in the network. Small-world

networks are characterized by high normalized clustering

coefficient c (C/Cran).1 and low normalized characteristic path

length l (L/Lran)<1 compared to random networks [99]. A

cumulative metric s—the ratio of normalized clustering coeffi-

cient (c) to the characteristic path length (l), a measure of small-

worldness—is thus greater than 1 for small world networks.

Analysis of Global Efficiency of Whole-Brain Functional
Connectivity

Small-world networks are characterized by high clustering

coefficient and low characteristic path length. These small-world

metrics, particularly the path length, are not meaningful when the

graph contains disconnected nodes. To address this issue, we

ensured that only small-world metrics computed on connected

graphs were considered in our analysis. Specifically, the algorithm

used to choose the correlation threshold (R) guaranteed that

disconnected graphs were excluded from the analysis. Also, in the

node-wise clustering coefficient comparison analysis, we only

considered thresholds from 0.1 to 0.6. We chose these thresholds

because beyond 0.6 the network gets divided into disconnected

subset of nodes.

To determine if our characteristic path length findings were

robust and reliable, we computed the efficiency of functional brain

networks. It has been previously reported that efficiency as a graph

metric (1) is not susceptible to disconnected nodes, (2) is applicable

to unweighted as well as weighted graphs, and (3) is a more

meaningful measure of parallel information processing than path

length [50]. Efficiency of a graph (Eglobal2net) [100] is the inverse of

the harmonic mean of the minimum path length between each

pair of nodes, Lij, and was computed as,

Eglobal{net~
1

N(N{1)

X

i=j[Lij

1

Lij

ð1Þ

To evaluate the network for its global efficiency of parallel

information processing, we compared the global efficiency of the

network (Eglobal2net) with corresponding values (Eglobal2ran)

obtained and averaged across 1,000 random networks with the

same number of nodes and degree distribution. A network with

small-world properties is characterized by a global efficiency value

that is lower than the random network: Eglobal (Eglobal2net/

Eglobal2ran),1.

Analysis of Hierarchical Organization of Whole-Brain
Functional Connectivity

We evaluated the hierarchical nature of the large-scale whole-

brain functional connectivity network by the b parameter [51]. b
measures the extent of the power-law relationship between the

clustering coefficient (C) and the degree (k): C<k2b. The clustering

coefficient (Ci) and the degree (ki) of every node was computed; b of

the network was calculated by fitting a linear regression line to the

plot of log(C) versus log(k).

Analysis of Regional Differences in Network Organization
and Connectivity

The human brain can be divided into five major divisions—

association, limbic, paralimbic, primary, and subcortical—each of

them having a distinct function [45]. We assessed the network

organization of these cortical divisions and how it differs in

development by examining the regional profile of metrics (degree,

l, Eglobal, and c) at the divisional level. The 90 anatomical regions

of our network were grouped into these five cortical divisions. The

association division consists of 44 regions, the limbic division

consists of 12 regions, the paralimbic division consists of 24

regions, the primary division consists of eight regions, and the

subcortical division consists of eight regions (see Table S1 for

region-wise division assignment). The graph metrics (degree, l,

Eglobal, and c) of 90 regions were aggregated into five divisions and

the aggregated metrics in the two subject groups were compared

using growth curve modeling, with an intercept, linear, and

quadratic terms. In the aggregation step, the graph metric value at

a correlation threshold of a division for a subject group was

computed by averaging the corresponding metric values across

regions belonging to that division. The aggregated metric values

for threshold values from 0.1 to 0.6 were compared. We chose

these thresholds because beyond 0.6 the network divides into

disconnected subsets of nodes and small-world metrics are no

longer meaningful [30]. This analysis was performed using the

Mplus software (http://www.statmodel.com).

Growth curve models describe change (growth) with respect to a

control variable. They are well-suited for analyzing group-level

differences in biomedical data, particularly in cases where

capturing and analyzing individual growth trajectories is impor-

tant. Furthermore, for group comparisons, growth curve models

alleviate the problem of multiple comparisons as fitted-curve

coefficients are compared in contrast to traditional approaches

where multiple individual points along the curve are compared. In

our study, the growth trajectories of graph metric values of a

subject carry important information about the variance within the

group and needs to be incorporated in the model. The coefficients

of growth curve models capture the baseline performance,

instantaneous growth rate, and the acceleration of the variable

of interest.

We next examined degree, l, Eglobal, and c values for each of

the 90 anatomical ROIs, for the two groups, as a function of the

correlation threshold. The metric values for threshold values from

0.1 to 0.6 in the two subject groups were compared using growth

curve modeling, as described above.
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Analysis of Interregional Functional Connectivity
Changes with Development

To further characterize regional differences in network

organization, we examined the regional connectivity at divisional

level: association, limbic, paralimbic, primary, and subcortical.

Differences in mean correlation coefficients for 4,005 pairs were

aggregated into 15 pairs and the resulting differences were then

normalized. (see also [101]). First, interregional pairs that showed

statistically significant (p,0.01, FDR corrected) increased or

decreased functional connectivity in young-adults group compared

to child group were identified as (+1) or (21), respectively. Second,

the number of decreased (21) or increased connectivities (+1) for

each of the 15 pairs was counted. For example, to identify

differential connectivity between the association division and the

subcortical division, the number of decreased or increased

connectivities between all pairs of subregions belonging to the

association division and subcortical division was counted. Finally,

since each brain region has a different number of subregions, the

aggregated differential connectivity count was normalized by the

number of possible connections between pairs of subregions

belonging to the two divisions under investigation.

Next we examined regional correlation values (connectivity) in

the two groups. We compared regional correlation values

aggregated across the 4,005 pairs of anatomical regions, between

young-adults and children. No significant between-group differ-

ences in the aggregated correlation values were observed. On the

basis of this observation, subsequently, individual regional

correlation values were z-transformed followed by centering of

the distribution around zero mean. These normalized correlation

values were compared between the two subject groups. t-Test with

a false discovery rate of 0.005 was used to test for significant

differences.

Analysis of Developmental Changes in Functional
Connectivity

We next examined the relationship between differences in

regional correlation values (connectivity) in the two groups and the

interregional wiring distance as determined using DTI. The wiring

distance between two regions was computed by measuring the

average length of the fiber tracks, in the MNI space, connecting

those regions (see Text S1 for details).

Supporting Information

Figure S1 Functional connectivity in children and
young-adults. Group averaged functional connectivity matrices

for children and young-adults. Value of the (i,j)th element of the

connectivity matrix corresponds to group averaged scale 3 wavelet

correlation between the resting-state timeseries of brain region i

and region j. Low correlation values are shown in darker color

whereas high correlation values are shown in lighter color.

Qualitatively, children, compared to young-adults, showed higher

connectivity between the subcortical (caudate, globus pallidus,

putamen, thalamus) and the cortical regions, and lower connec-

tivity between the paralimbic (cingulate gyrus, orbitofrontal cortex,

insula, parahippocampus gyrus, rectus gyrus, temporal pole) and

the cortical regions.

Found at: doi:10.1371/journal.pbio.1000157.s001 (2.70 MB TIF)

Table S1 Graph metrics for each anatomical region.

Found at: doi:10.1371/journal.pbio.1000157.s002 (0.17 MB

DOC)

Text S1 Experimental procedures.

Found at: doi:10.1371/journal.pbio.1000157.s003 (0.07 MB

DOC)
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