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Complex microbial communities, such as biofi lms in 
the oral cavity and lumenal and mucosal communities 
in the gastrointestinal tract, play prominent roles in 

human health and disease [1]. Microbial communities in vivo 
include many different bacterial species that are in dynamic, 
intimate association with each other and with the human 
host. In humans, the intestinal microbiota is composed of well 
over 500 species [2], and the concept of humans as super-
organisms [1,3] is highlighted by estimates that the human 
microbiome contains roughly 100 times as many genes as 
does the human genome. Increasingly, live microorganisms—
probiotics—are being administered in order to promote 
human health. But much remains to be understood about the 
nature of the molecular interactions between newly arrived 
and resident microbial community members. Can microbial 
communities be effectively manipulated by administering 
defi ned dosages of a specifi c probiotic? How do probiotics 
affect the functional properties of indigenous microbial 
communities?

The Intestinal Microbiota

The microbiota of animals and humans begins to be 
established as soon as the newborn is exposed to the 
environment at birth; its complete establishment in the 
mammalian intestine requires months. Pioneering bacteria 
that appear in the mammalian intestine within the fi rst 
several days of life are followed by a succession of colonizing 
species in a process that continues at least through weaning 
[4,5]. Diet, host genotype, social group, medical history, and 
advanced age have all been shown to infl uence the structure 
of the human intestinal microbiota [6]. In general terms, 
phylogenetic analysis of mammalian microbial communities 
especially in the intestine reveals shallow, fan-like radiations, 
revealing only a handful of phyla (Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria are most prominent). 
Most of the taxonomic diversity is found at the level of species 
and strains, with a highly uneven distribution of abundance 
among taxa [1]. It is estimated that over 80% of the species in 
the human colon are not yet cultivated [2]. 

New molecular tools are facilitating a more detailed 
view of microvariation in structure and function that 
may be important both for the microbial community and 
for metazoan physiology [5,7]. Differences between the 
colonic mucosa–associated and fecal microbiota of a single 
individual, as well as larger degrees of variation at a single site 
between individuals, suggest that compartmentalization and 
biogeography, as well as host-related factors, infl uence the 
microbial community at any given site [2,8]. 

Given the complexity of both the communities themselves 
and the range of factors known to infl uence them, 
experiments with model systems have made important 
contributions to our understanding of host–microbe 
interactions. In particular, the use of conventionally reared, 
microbe-free, and gnotobiotic mice have allowed controlled 
experiments that would be impossible in humans. Many of 
our current insights into the workings of probiotics come 
from mouse studies. Mouse models of colitis have described 
important compositional and functional differences between 
intestinal Lactobacillus populations. Lactobacillus spp. have 
featured prominently as probiotics. Interleukin-10–defi cient 

mice predisposed to colitis contained predominantly 
Lactobacillus johnsonii, whereas mice with an intact interleukin-
10 gene lacking evidence of colitis had greater Lactobacillus 
species diversity and featured L. reuteri as a predominant 
species [9,10]. Lactobacillus species differences were 
correlated to functional differences in the abilities of these 
commensal bacteria to suppress host cytokine production. 
Intestinal L. reuteri isolates from healthy mice were able to 
suppress tumor necrosis factor-alpha (TNF-α) production 
by macrophages, whereas L. johnsonii isolates from 
diseased animals were not able to affect microphage TNF-α 
production[11]. 

Altering the Mix

The administration of a single bacterial species in large 
doses to an animal with an established, complex, indigenous 
intestinal microbiota with hundreds of species does not 
necessarily lead to successful colonization. Studies in humans 
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have showed that probiotic strains generally persist in the 
human intestine for only a short time beyond when they are 
actually being ingested [12]. However, when colonization 
is achieved, the result may be communal population shifts 
with important consequences for gastrointestinal physiology. 
Pathogens that have adapted to mucosal surfaces may be 
particularly adept at competing with the resident community. 
In one study, oral administration of the murine pathogen 
Helicobacter hepaticus to mice resulted in reproducible, long-
lasting shifts in intestinal microbial composition and reduced 
overall diversity of the intestinal microbiota [13]. The changes 
refl ect in part the ability of the exogenously administered 
enteric pathogen to attain numerical dominance in the 
community. Although global metabolic functions of the 
community were not measured in this study, it is likely that 
large-scale changes in the microbial community’s functional 
repertoire occurred. Changes in the composition of microbial 
communities can result in aggregate functional differences that 
may affect digestion and host mucosal biology. 

In general, there are both direct and indirect mechanisms 
by which the introduction of one organism might favorably 
affect a second organism. The fi rst organism might provide 
a nutrient or other product (such as an enzyme) that can 
be used or recognized by the second, resulting in changes 
in gene expression and metabolism. In addition, the fi rst 
might provide binding sites or other factors necessary 
for colonization by the second. Less-direct mechanisms 
might involve effects by the fi rst organism, mediated by the 
community (e.g., suppressing a competitor) or by the host 
(e.g., altering immune system activity), resulting in more 
favorable environmental conditions for the second organism.

Recent studies are shedding light on the important role 
of the intestinal microbiota in modulating the impact of 
exogenously administered bacteria. The bacterium Bacillus 
thuringiensis produces a potent insecticidal toxin and has 
been used to manage insect populations that interfere with 
the practice of forestry and agriculture. After it is ingested 
by an insect, B. thuringiensis requires the presence of 
commensal midgut bacteria to produce insecticidal activity, 
as demonstrated by the loss of activity following pretreatment 
of moth larvae with antibiotics [14]. Functional activities that 
have been long assumed to reside within one microbe may in 
fact result from the interactions of many different microbes 
within a given habitat. 

The deliberate manipulation of microbial communities 
may result in sustainable changes of aggregate microbial 
and host physiologic functions. The administration of the 
probiotic L. paracasei to Trichinella spiralis–infected mice 
restored profi les of host energy metabolism, fat mobilization, 
and amino acid metabolism to those seen in mice without 
T. spiralis infection [15]. The administration of prebiotics 
may also result in alterations to host physiology through 
changes in microbial composition. Prebiotics are nonliving 
food ingredients that selectively promote the growth of 
certain benefi cial members of the indigenous intestinal 
microbiota and are typically not digestible by the host, per 
se. The introduction of specifi c prebiotics such as inulin, 
oligofructose, galacto-oligosaccharides, and lactulose clearly 
alter the microbial composition of the mammalian large 
intestine [16]. Some of the most commonly used prebiotic 
carbohydrates are fermented by colonic microbes to produce 
short-chain fatty acids, which are known to affect microbial 

and host mucosal physiology. Some prebiotics are believed 
to cause large shifts in microbial populations by facilitating 
the selective proliferation of bifi dobacteria and lactobacilli. 
Changes in the host such as increased calcium absorption and 
immunomodulation may be partly or entirely secondary to 
alterations in microbial composition. 

Functional Genomic Approaches

The combined functional genomic repertoire of entire 
microbial communities (i.e., the microbiome) can now be 
accessed with metagenomic approaches, providing new 
opportunities for scientists to explore mammalian physiology 
in a host-wide integrated manner. Using such a metagenomic 
approach, Gill et al. recently found that the human distal 
gut microbiome is enriched for many genes contributing 
to glycan, amino acid, and xenobiotic metabolism, and that 
this microbial genetic assemblage provides Homo sapiens 
with a vast set of genes that effectively increases the human 
physiological repertoire [3]. 

The manuscript in this issue of PLoS Biology by Sonnenburg 
et al. [17] examines the functional interactions between 
an intestinal mutualist, Bacteroides thetaiotaomicron, and an 
organism commonly used as a probiotic, Bifi dobacterium 
longum, in a mouse model. Changes in function are examined 
at a global level by using a variety of genomic approaches 
both to monitor transcriptional changes and to characterize 
habitat-associated carbohydrates. Ba. thetaiotaomicron appears 
able to target a greater diversity of polysaccharides for 
degradation when Bi. longum is present. When present, the 
probiotic also induces an array of host innate immunity 
genes. Prior work by the same group described functional 
genomic changes in commensal bacteria that enabled them 
to use host glycans when dietary carbohydrates were scarce 
[18]. Intestinal commensals are capable of altering their own 
genetic program depending on environmental variables, 
but can commensal and probiotic bacteria alter each other’s 
genetic programs in the milieu of the mammalian intestine? 
The answer appears to be yes. 

Technical approaches for understanding the composition 
and functions of the intestinal microbiota are being 
expanded to meet the challenges of many tall tasks 
ahead. The rapid completion of many microbial genomes 
provides ample DNA sequence information for functional 
metagenomics. Additional metagenomic studies of intact 
microbial communities are generating genetic information 
that is not found in completed or draft single-organism 
genome projects. The “mapping” of gene sequences 
and their predicted products to “clusters of orthologous 
groups” or on known metabolic pathways (e.g., using the 
KEGG database) allows predictions to be made regarding 
the functional capabilities of a microbial community [3]. 
As the era of high-throughput sequencing-by-extension 
unfolds, DNA sequence information that is pertinent to 
mammalian microbiomes will rapidly proliferate. Functional 
metagenomics will benefi t from DNA microarrays that 
include amalgamations of genes from multiple strains of 
a single species, from the multiple species that comprise 
microbial communities, and from genes from the host. Work 
of this sort will highlight pathways affected by deliberate 
manipulations with probiotics. Advances in bioinformatics 
will facilitate correlation of community-wide gene expression 
profi ling with pathways or system modules. Strategies for 
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cataloging microbial communities (such as denaturing high-
performance liquid chromatography  and high-throughput 
rDNA clone library sequence analysis) enable investigators 
to create profi les of the intestinal microbiota and to assess 
its dynamic features secondary to environmental infl uences. 
Fluorescence in situ hybridization applications are increasing 
our appreciation for the spatial topography of bacteria 
within intestinal communities and provide new insights into 
nonrandom distributions of organisms and interspecies 
interactions in space. Cell sorting and microfl uidics-
based microdevices enable microbiologists to sort and 
isolate individual bacterial cells and to study the biological 
properties of organisms directly from natural communities, 
including microbial biofi lms. The ability to acquire a genome 
sequence and genome-wide transcript abundance patterns 
from a single bacterial cell, without the need for cultivation 
in the laboratory, will have a huge impact on our ability to 
understand the role of cultivation-resistant organisms in 
their natural community setting. Finally, metabolomics and 
proteomics will facilitate explorations of secreted compounds 
and polypeptides that may serve as intermicrobial and 
microbial-host signals. 

Fundamental questions are being explored regarding the 
functional capabilities of microbial communities that directly 
affect the physiology of the mammalian intestine and the entire 
host. Sustainable effects on the host may depend on lasting 
changes in microbial community composition, its metagenome, 
and, more specifi cally, on alterations in the metabolic profi le 
of the community. As we improve our understanding of how 
probiotics might alter the functions of the resident microbiota, 
clinicians may improve their abilities to select candidates 
(microbial and host) for probiotic therapy, with the goal of 
enhancing or restoring the health of patients. �
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