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The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood.
In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide
evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the
identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus
homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their
translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b) and bipolar cells
(Xvsx1 and Xotx2). Furthermore, by in vivo lipofection of “sensors” in which green fluorescent protein translation is
under control of the 3’ untranslated region (UTR), we found that the 3’ UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to
drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time
of generation of photoreceptors (Xotx5b) and bipolar cells (Xvsx7 and Xotx2). The block of cell cycle progression of single
early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the
lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that
vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities.
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Introduction

Different types of neurons are generated at predictable
times in several developing brain structures [1-3]. Although
the molecular machinery that links a type of nerve cell to its
time of generation has been investigated in the fruit fly [4-6],
little is known in higher animals. In the vertebrate retina,
pluripotent progenitor cells generate the six main types of
retinal neurons (ganglion, horizontal, cone, amacrine, rod,
and bipolar cells) following an evolutionarily conserved time
schedule [1]. This observation suggests that a molecular
machinery has been selected to ensure tight coordination
between cell birth date (that is the time of exit from the cell
cycle) and the specification of a given neuronal cell fate [7].

Changes of retinal cell-fate competence (that is, the
capability to generate one type of retinal cell rather than
another) are controlled in time and space by the activity of
proneural bHLH transcription factors [8]. Moreover, these
alone are not sufficient to specify distinct cell fates [9], and
several pieces of evidence suggest that they act in concert
with homeobox gene products, which seem to refine their
action to generate different cell types [10]. A number of
homeobox genes were found to be necessary and/or sufficient
to establish retinal cell identity: proxI is both necessary and
sufficient for the generation of horizontal cells [11]; Xbhl
promotes ganglion cells [12]; the otx-like ¢rx [13] and otx5
[14,15] support the generation and/or maintenance of photo-
receptors; vsxl [16], chxI0lvsx2 [17], and otx2 [14] sustain the
production of bipolar neurons. While these data demonstrate
the crucial role of homeobox genes in retinal cell identity,
they do not address the question of how the neurogenetic
timing is controlled. A critical question is therefore when,
where, and how retinal homeobox genes are activated during
retinal neurogenesis.
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We recently observed that long-lasting cell cycle progres-
sion (and consequently a late cell birthday) is sufficient to
generate late retinal cell types such as rods and bipolar cells
[18]. Accordingly, the inhibition of cell cycle progression
greatly enhances the capability of the retinal bHLH gene
Xath5 to support the generation of ganglion cells, which are
the earliest-generated retinal cells, at the expense of bipolar
cells, which are the latest-generated neurons [19]. These
observations suggest that the activation of homeobox genes
that are crucial for late retinal cell types may be linked to cell
cycle progression rather than to absolute time. Notably, a
similar mechanism occurs in Drosophila, in which the
sequential expression of the transcription factors that control
different neuronal identities requires cytokinesis [4].

The aim of this work is to provide evidence that the
sequential activation of retinal homeobox genes depends on a
cellular clock that establishes the cell birth dates of distinct
retinal cell types. Here we report that the three Xenopus
homeobox genes Xotx5b, XvsxI, and Xotx2 are translationally
regulated with a timing that parallels that of the generation of
photoreceptors (Xotxb5) and bipolar cells (Xusx! and Xotx2)
and that their translation depends on cell cycle progression.
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Moreover, we show that the block of cell cycle progression
severely affects the generation of photoreceptors and bipolar
cells, whereas Xotx5b and Xvsx1 proteins can overcome this
effect. Our results confirm the importance of a cellular clock
in establishing distinct cell fates and draw attention to the
translational control of homeobox genes as a mechanism to
regulate the neurogenetic timing in the Xenopus retina.

Results/Discussion

In the Xenopus retina, Xotx2 is both necessary and sufficient
for the generation of bipolar cells [14]. Moreover, while also
vsxI [16] and chxI0Olsx2 [17] are necessary in other verte-
brates, chx10 is not sufficient to support the bipolar fate in
Xenopus [20]. We recently isolated the Xenopus homolog of
vsxl, Xvsxl, which is expressed by retinal progenitors and, in
the mature retina, by bipolar cells (D’Autilia et al., unpub-
lished data). To assay the ability of Xuvsx! to support the
generation of bipolar cells, we lipofected the XuvsxI coding
sequence into stage (st.) 17-18 embryonic optic vesicles and
compared the proportion of XvsxI-lipofected cells to control-
lipofected cells at the stage of mature embryonic retina (st.
42; Figure 1). As reported in Figure 1B and 1C, XusxI
lipofection significantly increases the proportion of bipolar
cells and decreases that of photoreceptors compared to
control lipofection (Figure 1A and 1D). Thus, in the Xenopus
retina, Xotx5b supports photoreceptor differentiation [14],
while Xo#x2 and XvsxI support bipolar cell differentiation.

Photoreceptors (namely rods) and bipolar cells are the
latest-generated retinal neurons both in Xenopus [9,21] and in
mammals [1]. With the idea that Xotx5b, Xotx2, and XvsxI were
sequentially activated during retinal neurogenesis, matching
the time of photoreceptor and bipolar cell generation, we
examined their spatiotemporal pattern of expression. We
observed that Xotx5b, Xotx2, and XvsxI are strongly regulated
at post-transcriptional level, both in time and space. At mid-
retinal neurogenesis (st. 34 [22]), the mRNAs of these three
genes show a similar widespread pattern of expression, but
only the Xotxbb protein is detectable in few apical nuclei
(Figure 2). Xvsxl protein detection starts at late-retinal
neurogenesis (st. 37), when the mRNAs of the three genes
begin to segregate into specific retinal domains (Figure 2).
Xotx2 protein is detectable at high levels from st. 38-39 (not
shown) onward. The patterns of protein and mRNA expres-
sion are further refined in mature embryonic retinas (st. 42).
At this time, Xotx2 mRNA identifies most bipolar cells [14],
Xotx5b mRNA marks photoreceptors and a sub-population of
bipolar cells [14], and Xwvsx] mRNA labels bipolar cells
(D’Autilia et al., unpublished data). At the protein level,
Xotx2 and Xvsxl are detectable in bipolar cells, whereas
Xotxbb is visible in photoreceptors but not in bipolar cells.
The peculiar post-transcriptional regulation of Xotx5b,
Xvsx1, and Xotx2 is maintained in the ciliary marginal zone
(CMZ), a proliferating region that, in the mature retina of
fishes and amphibians, continues producing new retinal cells
and recapitulates all the embryonic developmental steps [23].
Notably, CMZ analysis indicates that Xotxbb, Xvsxl, and
Xotx2 proteins start to be detectable in early post-mitotic
cells (Figure S1).

What are the mechanisms controlling protein expression?
We found that cis-acting signals in the 3" UTR of Xotx5b,
Xvsxl, and Xotx2 mRNAs are sufficient to regulate their
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Figure 1. The Xenopus Xvsx1 Homeobox Gene Supports Bipolar Cell Fate

(A-C) Sections of st. 42-lipofected retinas. GFP (green) traces lipofection.
(A) Example of control lipofection. (B and C) Example of Xvsx1 lipofection.
(C) Immunostaining (red fluorescence) with amacrine antibodies panel
(anti-5-HT, anti-GABA, anti-tyrosine hydroxilase), labeling the main
classes of amacrine cells at this developmental time [47,48] ONL: outer
nuclear layer; INL: inner nuclear layer; GCL: ganglion cell layer. Xvsx1
lipofection (B) increases the proportion of INL cells and decreases the
proportion of ONL cells compared to control (A). The majority of the
Xvsx1-lipofected cells in the INL are not stained either by amacrine
markers (C), or by the horizontal marker prox1 (not shown).

(D) Statistical analysis showing the proportion of lipofected cell types.
Cell types were identified as described [14]. Error bars indicate standard
error of the mean. Xvsx1 misexpression increases the proportion of
bipolar cells (from 33% of control to 55%, student’s t-test, p = 0.000043),
mainly at the expense of photoreceptors (from 29% to 14%, student's t-
test, p = 0.000011).

DOI: 10.1371/journal.pbio.0040272.9g001

pattern of translation. We constructed sensors [24] in which
the 3" UTR of each gene was placed downstream of green
fluorescent protein (GFP) cDNA (see Materials and Methods).
We lipofected these sensors into the optic vesicles and
analyzed the distribution of both the GFP mRNA and protein
produced by the sensor in single lipofected cells. Figure 3A
shows typical results of analyses performed on sections of st.
42 retinas. Control-lipofected cells show co-expression of
mRNA and protein. Conversely, sensors are generally poorly
translated, except in photoreceptors (Xotx5b sensor) or
bipolar cells (XusxI and Xotx2 sensors).

The inhibition of GFP translation driven by these UTRs in
specific cell types is statistically significant, as reported in
Figure 3B. Recently, extensive bioinformatic analyses have
shown that at least 20% of the vertebrate genes display in
their 3" UTR a family of highly conserved short regions [25],
most of which are complementary to a newly discovered class
of regulatory short RNAs called microRNAs (miRNAs).
Accordingly, cis-acting signals controlling protein translation
through the binding of a miRNA have been found in the 3’
untranslated region (UTR) of Hox genes [26]. Using an in
silico approach, we found that the 3" UTR of Xotx5b, Xusx1,
and Xotx2 contains candidate miRNA domains for 42 distinct
miRNAs, four of which are shared by all the three 3" UTRs
(Table S1). These miRNA domains are widely dispersed in the
3" UTR of each gene. Whereas such miRNA domains could
reveal a functional relevance, specific RNA-binding proteins
might also be involved in regulating the translation of retinal
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Figure 2. The Translation of the Xenopus Homeobox Xotx5b, Xvsx1, and Xotx2 mRNAs Parallels the Generation of Photoreceptors and Bipolar Cells

In situ hybridization of Xotx2, Xotx5b, and Xvsx1 mRNAs (Fast Red detection) compared to immunostaining of the corresponding proteins (green
detection) on serial 10-um sections of embryonic retinas at st. 34 (mid-neurogenesis), st. 37 (late-neurogenesis), and st. 42 (mature embryonic retina).
Schematics show the retinal cell types present at the corresponding times of analysis (see also Figure S2). Dashed lines border the entire thickness of
neural retinas (st. 34-37), or indicate the boundaries between different cell layers (st. 42, magnification of central retinal aspect); GCL: ganglion cell layer,

INL: inner nuclear layer, ONL: outer nuclear layer.
DOI: 10.1371/journal.pbio.0040272.9g002

homeobox genes, since several of them have been shown to
control the development and plasticity of the central nervous
system, including the retina, in both Drosophila and verte-
brates [27-29]. Thus, we found that the 3’ UTRs of Xotx5b,
Xvsxl, and Xotx2 are cis-acting regulators of translational
repression, but the molecular nature of the tfrans-acting
repressor(s) remains to be established.

In addition to the role of the 3" UTRs in patterning protein
translation, we analyzed their effects on the timing of sensor
translation by time-lapse imaging (Figure 4). At st. 30
(assumed as time 0 of imaging), almost all control-lipofected
retinas already show GFP-positive clones. The onset of GFP
detection in sensor-lipofected retinas is delayed and parallels
the onset of detection of the corresponding proteins, peaking
at 12 h (st. 35) for Xo#x5b sensor, 16 h (st. 37) for XuvsxI sensor,
and at 24 h (st. 39) for Xotx2 sensor. These results show a
correlation between the translational onset of a sensor and
that of the corresponding gene. An obvious question is
whether such timing associates with the cell birth dates of
photoreceptors and bipolar cells. By BrdU labeling from st.
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30, 34, and 37 and analyses of the BrdU-positive cells in
mature retinas, we evaluated the proportion of dividing
progenitors fated to generate a given cell type (Figure S2).
The proportion of dividing photoreceptor progenitors drops
from 68% (* 2.6% standard error of the mean) at st. 30 to
24% (£ 3.3% standard error of the mean) at st. 34, when
Xotxbb protein is first detectable. The percentage of
proliferating bipolar progenitors falls from 63% (= 5.1%
standard error of the mean) at st. 34 to 7% (% 1.2% standard
error of the mean) at st. 37, when Xvsx1 protein is first
detected, followed soon after by Xotx2 protein detection (st.
38-39). Thus, there is a temporal correlation between the
translational onset of the three genes, the translational onset
of sensors, and the cell birth dates of photoreceptor and
bipolar cells.

We investigated the role of cell cycle progression in the
translational control. We found that Xotx5b, Xvsxl, and Xotx2
mRNAs require progressively increasing times of cell cycle
progression to be efficiently translated. To establish this
point, we blocked cell cycle progression by hydroxyureal
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Figure 3. The 3’ UTRs of Xotx5b, Xvsx1, and Xotx2 mRNA Direct Cell Type-Specific Inhibition of Translation

(A) Detection of sensor mRNAs (Fast Red), sensor GFP protein (green immunodetection), or co-detection of both mRNA and protein (merge, yellow), in
cells of mature retinas (st. 42) lipofected with GFP control vector, or UTR-carrying sensor vectors (see Materials and Methods). Unlike control GFP, sensor
GFP translation is detectable (arrowheads) mainly in photoreceptors (Xotx5b sensor) or bipolar cells (XvsxT and Xotx2 sensors). ONL: outer nuclear layer;

INL: inner nuclear layer; GCL: ganglion cell layer.

(B) Bars show the proportion of sensor-translating/sensor-transcribing cell types. Number of cells is indicated by n. Error bars represent standard error of
the mean. Single asterisk indicates p < 0.05; double asterisk indicates p < 0.01 (student’s t-test).

DOI: 10.1371/journal.pbio.0040272.g003

aphydicoline (HUA) [30]. HUA treatment (150 uM hydrox-
yurea, 20 uM aphydicoline) starting from st. 25, 30, 33, or 35
does not inhibit the transcription of Xoix5b, Xvsx1, and Xotx2
genes (Figure 5). However, the corresponding proteins are
detectable at the end of treatment (st. 42) only when this
starts after st. 30 (Xotxbb), st. 33 (Xvsx1), or st. 35 (Xotx2).
When detectable, the pattern of expression is comparable to
that of control retinas (compare Figure 5 to st. 42 in Figure 2).
Although impairing proper retinal lamination, HUA does not
interfere with neural cell differentiation [30]. Accordingly,
our analysis shows that retinas treated with HUA can express
both general neuronal (neurotubulin) and glial (R5 antigen [31])
cell markers (Figure S3). Treatment from st. 30 does not affect
expression of markers for ganglion cells (hermes [32]),
horizontal cells (proxI [11]), amacrine cells (tyrosine hydrox-
ilase+, GABA+, 5-HT+), and photoreceptors (interphotore-
ceptor retinoid-binding protein [IRBP] gene [IRBP] [33]).
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However, treatment from st. 25 dramatically decreases the
expression of IRBP, as well as of amacrine markers
(unpublished data).

Is an early block of cell cycle progression sufficient to
inhibit the translation of Xotx5b, Xvsxl, and Xotx2 in a cell-
autonomous way? To test this hypothesis, we inhibited cell
cycle progression of single retinal progenitors in a normal
environment by the lipofection of the cell cycle inhibitor
Xgadd-45v [34,35] (Figure 6). When overexpressed in medaka
fish early blastula, Xgadd-45y favors cell cycle exit in G1 [34].
In the Xenopus retina, it is directly induced by Xath5 and
expressed by retinal progenitors about to exit from the cell
cycle [36]. Misexpression of Xgadd-45y inhibits retinal cell
divisions: BrdU injected at st. 33-34 is detected at st. 42 in
fewer Xgadd-45y-lipofected cells (19% =* 3.4% standard error
of the mean) compared to control-lipofected cells (41% =
0.79% standard error of the mean; p =0.001, student’s -test).
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Figure 4. The 3’ UTRs of Xotx5b, Xvsx1, and Xotx2 mRNAs Direct Time-
Dependent Inhibition of Translation

(A) Examples of time-lapse imaging of lipofected retinas. Times are
calculated starting from st. 30 [22] (which corresponds to time 0). To
better visualize GFP, pigmentation was abolished as described [43]. Each
micro-photograph shows the entire area of a lipofected eye and is
focused on lipofected cells of the neural retina. Red arrows point to
lipofected clones of cells.

(B) Statistical analysis of 68 records. Bars express the proportion of
lipofected retinas in which GFP was first detectable at a given time.
Number of retinas examined is indicated by n.

DOI: 10.1371/journal.pbio.0040272.g004

Significantly, Xgadd-45y-lipofected cells translate Xotx5b,
Xusxl, and Xotx2-co-lipofected sensors less efficiently than
cells lipofected with the sensor alone (Figure 6F). Moreover,
the number of Xgadd-45y-lipofected cells that express
Xotxbb, Xvsxl, and Xotx2 proteins is considerably lower
than that of control cells (not shown). In addition, Xgadd-45y
misexpression decreases the proportion of photoreceptor
and bipolar lipofected cells compared to control (Figure 6A-
E and 6G).

We propose that it is the decreased production of Xotx5b
and Xvsx1 proteins after the block of cell cycle progression
that causes the decrease of photoreceptor and bipolar cells. If
such is the case, then the effect of Xgadd-45y should be
reversed by Xotxbb and Xvsxl proteins. In fact, the co-
lipofection of the Xotx5b coding region (without 3’ UTR) with
Xgadd-457 raises the fraction of photoreceptors from 19% (=

@ PLoS Biology | www.plosbiology.org

Timing Retinogenesis by Homeoproteins

1.3% standard error of the mean) to 63% (* 0.9% standard
error of the mean; p = 0.0000025, student’s ¢-test) and that of
XvsxI increases the proportion of bipolar cells from 18% (*
2.2% standard error of the mean) to 58% (* 2.5% standard
error of the mean; p = 0.00002, student’s ¢-test) (Figure 7).

On the opposite, the co-lipofection of Xotx5b or Xuvsxl
constructs, including the corresponding 3’ UTRs, is drasti-
cally less effective in rescuing the proportion of photo-
receptors cells (Xotx5b coding + 3" UTR: 31% = 2.1%
standard error of the mean) and bipolar cells (XvsxI coding
+ 3" UTR: 29% = 1.8% standard error of the mean)
compared to the co-lipofection of the coding sequences
alone (Figure S4). Indeed, the 3’ UTR included in these
constructs is the same as that which is responsible for the
significant decrease of translation when assayed by GFP
sensors both in normal (Figures 3 and 4) and in Xgadd-45y-
arrested cells (Figure 6F). According to the antiproliferative
effect elicited by Xgadd-45v, the size of clusters of cells co-
lipofected with Xgadd-45y and Xotx5b (Figure 7B), or with
Xgadd-45y and XvsxI (Figure 7D), was always smaller than the
size of clusters of cells lipofected with only Xotx5b (Figure 7A),
or with XuvsxI (Figure 7C). Remarkably, the majority of bipolar
cells generated by the co-lipofection of Xgadd-45y and XvsxI
have an earlier cell birth date than control-lipofected bipolar
cells, as indicated by BrdU-incorporation experiments (not
shown). These results indicate that the overexpression of
Xotxbb and Xvsx1 proteins can bypass a cell cycle-dependent
cellular clock that sets the generation of photoreceptors and
bipolar cells. However, these proteins are unlikely elements of
the cell clock machinery, because they are not expressed at a
detectable level in cycling cells (Figure S1). Rather, our data
suggest that they are downstream effectors of this clock,
which could set the time of neuronal generation by transla-
tional inhibition.

How would this cellular clock measure the time to set the
generation of late cell types? Previous studies in cortical
development [37] and in rat retinal development [38] have
shown that the cell cycle length of neural progenitor cells
increases over time. Because these progenitors generate
different cell types over time, this suggests a correlation
between cell cycle length and cell fate. By a labeling-index (LI)
analysis [39], we estimated that the cell cycle length of mid-
neurogenesis retinal progenitor cells (st. 30) is 5.1 h (* 1.3 h),
whereas that of later progenitors (st. 34) is 8.1 h (£ 0.6 h;
Figure SHA).

To assay a possible functional correlation between cell
cycle length and cell fate, we shortened the cell cycle of late
progenitor cells by lipofection of the cell cycle regulator E2F,
which is necessary for cell cycle progression after mid-
blastula transition [40]. At st. 34, cells lipofected with XE2F
have an estimated cell cycle length of 5.5 h (£ 1.2 h), whereas
cdk2/cyclinA2-lipofected cells show a cell cycle length (7.8 =
0.9 h) that is comparable to that of non-lipofected cells of the
same age (Figure S5B). Nonetheless, more XE2F-lipofected
cells (48% = 2% standard error of the mean) and cdk2/
cyclinA2-lipofected cells (45% * 0.1% standard error of the
mean) are cycling than control-lipofected cells (23% * 0.1%
standard error of the mean) at this stage (Figure S5B). Thus,
both XE2F and cdk2/cyclinA2 lipofection delay the exit from
the cell cycle, but only XE2F lipofections shortens cell cycle
length. Remarkably, Xotx2 translation at st. 40, soon after its
normal onset, is considerably inhibited by XE2F lipofection
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Figure 5. Blocking Cell Cycle by HUA Inhibits the Sequential Translation of Xotx5b, Xvsx1, and Xotx2 mRNAs

In situ hybridization (mMRNA: Fast Red detection) and antibody immunodetection (protein: green fluorescence) on 10-um thick serial sections of st. 42
retinas. Embryos were grown in medium containing HUA (hydroxyurea, 150 uM and aphidicolin, 20 pM) from the stage indicated to st. 42. The examples
show typical results obtained in three different experiments (n > 15 embryos/treatment in each experiment).

DOI: 10.1371/journal.pbio.0040272.9g005

compared to control, whereas it is slightly increased by cdk2/ lipofected cells proliferate longer than control cells, their
cyclinA2 lipofection (Figure 8A-8D). different cell fates cannot be explained in terms of absolute

According to this observation, XE2F-lipofected cells gen- time spent as cycling cells. Rather, we speculate that a long
erate significantly fewer bipolar cells than control-lipofected cell cycle is necessary during the last cell division(s) of a
cells, whereas cdk2/cyclinA2 lipofection increases their pro- progenitor to translate Xotx2 protein after cell cycle exit and

portion (Figure 8E-8G). Since both cdk2/cyclinA2 and XE2F- to eventually differentiate as a bipolar cell. These results,
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Figure 6. Cell Cycle Inhibiton by Xgadd-45y Lipofection Affects Translation and Cell Fate

(A-E) Retinal sections (st. 42) of control-lipofected retinas (A) or Xgadd-45y-lipofected retinas (B-E). Xgadd-45y lipofection decreases the size of
lipofected cell clusters. (C-E) Show lipofected cells (GFP-traced) counterstained (arrowheads) with cell type markers: (C) ganglion cells (Fast Red mRNA
detection of hermes), (D) horizontal cells (Fast Red mRNA detection of proxT), (E) cones (calbindin red immunodetection). ONL: outer nuclear layer; INL:
inner nuclear layer; GCL: ganglion cell layer.

(F and G) Bars indicate the proportions of lipofected cells translating sensors (F). Bars showing the proportions of lipofected cell types at st. 42 are
indicated by (G). Number of counted cells is indicated by n; single asterisk indicates p < 0.05; double asterisk indicates p < 0.01 (student’s t-test); error
bars: standard error of the mean.

DOI: 10.1371/journal.pbio.0040272.9g006
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Figure 7. Xotx5b and Xvsx1 Counteract the Inhibitory Effects of Xgadd-45y on the Differentiation of Photoreceptors and Bipolar Cells
(A-D) Examples of retinal sections from embryos lipofected with Xotx5b (A), Xotx5b and Xgadd-45y (B), Xvsx1 (C), and Xvsx1 and Xgadd-45y (D). ONL,

outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.

(E) Statistical analysis showing the proportion of lipofected cell types after lipofection of the constructs indicated in legend. Number of lipofected cells is

indicated by n. Error bars indicate standard error of the mean.
DOI: 10.1371/journal.pbio.0040272.g007

together with the natural lengthening of cell cycle observed
during retinogenesis, support the idea that the retinal cell
clock would measure the cell cycle length, rather than time, to
set the generation of late retinal cells.

Conclusion

We showed that the Xotx5b, Xvsxl, and Xotx2 mRNAs are
sequentially translated during retinal neurogenesis. Transla-
tional control accounts both for the timing of activation and
the cell-specificity of expression of the three genes. Our
results show that cell cycle progression is necessary to
sequentially remove the translational inhibition of Xotx5b,
XvsxI, and Xotx2. Consequently, homeobox proteins (Xotx5b,
Xvsxl, or Xotx2) produced by a retinal post-mitotic cell
depend on the cell birth date. Since these three homeobox
proteins are crucial for establishing different cell types, this
explains in molecular terms why cells that have different
birth dates become different retinal neurons.

Our observations indicate that a cellular clock depending
on cell cycle progression sets the generation of photo-
receptors and bipolar cells and that Xotx5b, Xvsx1, and Xotx2
proteins are downstream effectors of such a clock. Although
our observations suggest that this clock measures cell cycle
length and that translational inhibitors are part of the clock
machinery, its molecular nature is at present unknown. It is
now crucial to extend these findings to other retinal cell-fate
genes, to dissect the mechanisms of translational inhibition
and to find out how cell cycle progression can remove the
translational inhibition over developmental time.

Materials and Methods

Embryonic developmental stages were evaluated as described by
Nieuwkoop and Faber [22]. To immunodetect Xvsx1, Xotx5b, and
Xvsx1 proteins, immunoaffinity-purified polyclonal antibodies were
generated in rabbit by PRIMM SRL. Synthetic peptides (three for

@ PLoS Biology | www.plosbiology.org

each of XvsxI and Xotx5b, and two for Xotx2), corresponding to 15aa-
long regions outside the homeobox of the predicted protein
sequence, were used as immunogens. Antibody specificity was first
assayed by Western blot analysis. Immunostaining of HEK 293T cells,
transfected with the coding sequence of the three genes, confirmed
the specificity of all three antibodies.

In situ hybridization and immunohistochemistry were performed
according to Viczian et al. [14]. The following antibodies were used:
anti-Xotxbb (1:20), anti-Xotx2 (1:200), anti-Xvsx1 (1:150), anti-calbin-
din (Merck Biosciences, http:/lwww.merckbiosciences.co.uk/home.asp;
1:1,000), anti-5-HT (DiaSorin, http:/lwww.diasorin.com; 1:1,000), anti-
GABA (DiaSorin; 1:1,000), anti-tyrosine hydroxilase (DiaSorin;
1:1,000), R5 [31] (1:100, kindly supplied by W. Harris [University of
Cambridge, Cambridge, United Kingdom]), anti-GFP (Molecular
Probes, http://probes.invitrogen.com; 1:500), fluorophore-conjugated
(oregon green, rhodamine) anti-mouse and anti-rabbit antibodies
(Molecular Probes; 1:500). Antibodies were incubated as described [14]
except anti-Xotxbb (0.3% instead of 0.1% Triton X-100) and anti-
Xvsxl (antigen unmasking by 15-min treatment with 2N HCL).

GFP-sensors were obtained by cloning RT-PCR fragments of the 3’
UTRs into Xhol-Xbal sites of pCS2-GFP (http://sitemaker.umich.edu/
dlturner.vectors), just downstream of the GFP coding sequence. Co-
transcription of GFP and UTR sequences is under CMV promoter
control (see schematics in Figure 2). The following fragments were
inserted: Xotx5b: +1,097 + 2,193; XvsxI: +1,482 + 2,878; Xotx2: +1,039 +
1,666; pCS2-GFP vector was used as negative control.

Lipofections [41] were carried out as described [14,18]. A Myc-tag-
pCS2-Xgadd-45y construct [35] suitable for lipofection was kindly
provided by José Luis Gomez-Skarmeta (University of Murcia, Murcia,
Spain). The pCS2-XE2F construct, containing the Xenopus XE2F
coding region [42], was a generous gift of Ali Hemmati-Brivanlou
(Rockefeller University, New York, United States). For sensor
lipofections, sections were hybridized with a GFP Dig-labeled
antisense probe; after Fast Red (Roche, Basel, Switzerland) detection
of GFP mRNA, GFP protein was revealed by anti-GFP antibody.

In time-lapse experiments, lipofected retinas were imaged every 4
h, starting from st. 30 (considered as time 0). To avoid pigmentation,
embryos were treated with 0.003% N-phenylthiourea (Sigma, St.
Louis, Missouri, United States) [43] until imaging. After hatching and
shortly before imaging (st. 28), embryos were embedded into soft agar
(1%, in 0.1X MMR buffer) in 24-well plates, with their lipofected eyes
up. Images of the lipofected eyes were obtained using epifluorescence
stereomicroscopy (Nikon SMZ1500 [Tokyo, Japan]) connected with a
digital camera (Photometrix CoolSnap, Roper Scientific, Trenton,
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Figure 8. XE2F Lipofection Inhibits Xotx2 Translation and the Generation of Bipolar Cells

(A-Q) st. 40-lipofected retinas. Lipofected cells are traced by GFP (green), Xotx2 immunostaining in red. Arrows indicate Xotx2-positive lipofected cells.
(D) Histogram showing the proportion of retinal lipofected cells expressing Xotx2 protein. Number of counted cells is indicated by n. Double asterisk
indicates p = 0.009; triple asterisk indicates p = 0.0001 (student’s t-test); error bars indicate standard error of the mean.

(E-G) Cell type analysis of lipofected retinas at st. 42. Examples are shown of retinas lipofected with cdk2/cyclinA2 (cdk/cyc in [E]) and XE2F (F). GCL:
ganglion cell layer; INL: inner nuclear layer; ONL: outer nuclear layer; pe, pigmented epithelium. Red arrowheads point at cells with amacrine
morphology, which represent the majority of cell types in the INL of XE2F-lipofected retinas. Bars in (G) show the proportion of lipofected cells types at
st. 42. Number of counted cells is indicated by n; double asterisk indicates p < 0.01; triple asterisk indicates p < 0.001 (student’s t-test); error bars:
standard error of the mean. The lipofection of cdk2/cyclinA2 and XE2F increases and decreases, respectively, the proportion of bipolar cells compared to
control. The decrease of photoreceptors after cdk2/cyclinA2 lipofection is due to a reduction of cones [18].

DOI: 10.1371/journal.pbio.0040272.g008

New Jersey, United States). After imaging, some of the lipofected eyes
were fixed, sectioned, and analyzed to confirm the nature of the
transfected cells.

Supporting Information

Figure S1. Xotx5b, XvsxI, and Xotx2 Expression in the CMZ

Comparison between Xotx5b, Xvsxl, and Xotx2 mRNA or protein
detection (red) and BrdU-positive cells (green) in the CMZ of st. 42
retinas, after an 8-h BrdU pulse. Since this time of incorporation
corresponds to the average cell cycle length of a late embryonic
retinal progenitor (see Figure S5), the region of green-labeled cells
reasonably excludes the majority of post-mitotic cells. From its most
marginal aspect (M) towards the central side of the retina (C), the
CMZ recapitulates the different stages of embryonic retinal neuro-
genesis [23], with more marginal cells earlier (less mature) than more
central ones. Green arrows point at the central boundary of BrdU
immunodetection, and red arrows indicate the marginal border of
mRNA/protein detection. Whereas mRNA detection of the three
genes always largely co-localizes with BrdU-labeled cells, none of the
cells expressing detectable levels of the corresponding protein
contains BrdU. These data indicate that Xotx5b, XvsxIl, and Xotx2
start to be translated at a measurable level in post-mitotic cells.

Found at DOI: 10.1371/journal.pbio.0040272.sg001 (743 KB JPG).
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Figure S2. Neurogenetic Timing in Xenopus Embryonic Retina

To investigate the cell birth date (that is the time of exit from the cell
cycle) of different retinal cells, we labeled dividing retinal progenitors
by BrdU intrabdominal injections [19] from st. 30, st. 34, and st. 37,
and analyzed their differentiation fates at st. 42 (mature embryonic
retina). As the generation of the Xenopus Miiller glia, which is the last
retinal cell type to exit from the cell cycle, was extensively
investigated both in terms of cell birth date and at the molecular
level [31], we focused our attention on retinal neurons.

(A-C) Examples of st. 42 retinal sections immunostained for BrdU
(green signal). Dashed lines enclose the central part of retina that was
considered for statistical analysis.

(D-F) Magnifications of st. 42 retinal sections in which BrdU (green)
was co-detected with specific retinal markers (Fast Red mRNA
detection). White arrows point to double-labeled cells. The following
markers were used to identify different cell types: hermes [32] for
ganglion cells (D), proxI [11] for horizontal cells (not shown), amacrine
antibodies panel (anti-5-HT, anti-GABA, anti-tyrosine hydroxilase) as
in Figure 1 (not shown), IRBP [33] for the external segment of
photoreceptors (E), XvsxI (F), and Xotx2 (not shown) for bipolar cells.
ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion cell
layer.

(Gy) Bars show the proportion of each cell type that was still dividing at
the time of BrdU injection. Error bars show standard error of the
mean. We classified the BrdU-positive cells according to their
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morphology, position in the retinal layers, and expression of markers.
The cell birth dates of the different Xenopus retinal neurons are
partially overlapping. Nonetheless, rods among photoreceptors [21]
and bipolar cells show the latest cell birth dates. A substantial
proportion of their progenitors are still dividing (being BrdU-
positive) at st. 34 (24% photoreceptors and 63% bipolar). At this
stage, only a few ganglion, horizontal, and amacrine progenitors are
still dividing (6%, 5%, and 12%, respectively). Bipolar cells are the
latest neurons, as the majority of them (63 %) are still dividing at st. 34.

Found at DOI: 10.1371/journal.pbio.0040272.sg002 (820 KB JPG).

Figure S3. Effects of HUA Treatment on Retinal Histogenesis

Retinal sections of st. 42 embryos, treated with HUA (150 puM
hydroxiurea, 20 pM aphidicoline) from st. 30, compared to control. In
situ hybridization of mRNAs (neurotubulin, hermes, proxI, and IRBP) are
detected with Fast Red, and antibodies (anti-R5, amacrine antibodies
panel) are immunodeteced with Oregon green-conjugated secondary
antibody. According to Harris et al. [30], HUA blocks cell
proliferation in 4 h from the beginning to the end of treatment, as
detected by BrdU-incorporation assay and immunodetection of
mitotic cells with the phosphorylated form of Histone3 (not shown).
The treatment reduces retinal size but does not impede terminal cell
differentiation, as shown by the expression of the Miiller glial marker
R5 [31] and neurotubulin, the staining of which in treated embryos is
comparable to control. Immunostaining of the neuronal marker
acetylated tubulin (Sigma T6793; 1:1,000) confirmed the observation
obtained by in situ hybridization with a newrotubulin probe (not
shown). The pattern of neurotubulin and Miiller glial staining indicates
that retinal layering is compromised. This happens, even more
severely, when treating from earlier stages (not shown, compare to
Harris et al. [30]). The expression of markers for ganglion cells
(hermes) and horizontal cells (proxl) is not affected by treatment. The
expression of markers for amacrine cells (amacrine antibodies panel
as in Figure 1: anti-5-HT, anti-GABA, and anti-tyrosine hydroxilase)
and photoreceptors (IRBP) is often reduced but is still detectable with
a pattern similar to that of control in all the examined embryos.
Treatment from st. 25 strongly reduces JRBP and amacrine markers,
but allows the expression of hermes and proxI (not shown).

Found at DOI: 10.1371/journal.pbio.0040272.sg003 (609 KB JPG).

Figure S4. Functional Comparison between Constructs Carrying
Coding and Coding Plus 3" UTR of Xotx5b and Xwsx! in Co-
Lipofection Experiments with Xgadd-45y

Statistical analysis showing the proportion of lipofected cell types
after lipofection of the constructs indicated in legend (Xgadd stays
for Xgadd-45y). “Full” indicates constructs containing the coding
region plus its 3" UTR. These constructs were assembled by cloning
the complete 3’ UTR sequence (see Materials and Methods) upstream
of the coding sequence in the pCS2 vector. Number of lipofected cells
are indicated by n. Error bars indicate standard error of the mean.
Asterisks show the statistical significance of the differences between
coding and coding +3" UTR-containing constructs: Single asterisk
indicates p < 0.05; triple asterisk indicates p < 0.001.

Found at DOI: 10.1371/journal.pbio.0040272.sg004 (366 KB JPG).

Figure S5. LI Analysis

(A and B) Analyses of the BrdU-LI (the proportion of BrdU-labeled
cells) in wild-type (wt) (A) and lipofected (B) retinas. BrdU was
injected and detected as described [19,31]. Images in (A) show
examples of retinal sections of wt embryos, after different times of
BrdU in incorporation (h BrdU) starting from st. 30 and st. 34. White
lines demarcate the central retinal region that was considered for
quantitative analysis. BrdU-positive nuclei are detectable in green
among DAPI-stained (blue) nuclei. L: lens. Images in (B) show
magnifications of retinas (bordered by dashed lines) lipofected at st.
17 with cdk2/cyclinA2 (cdklcyc [18]), or with XE2F [42], after BrdU
cumulative incorporation from st. 34. White arrows point at BrdU-
positive nuclei (detectable in red) of lipofected cells (detectable in
green). Histograms show the percentage of BrdU-immunopositive
cells among DAPI-positive cells (A), or lipofected cells (B), after
cumulative BrdU incorporation; & indicates the time of incorpo-
ration (in hours); n reports the total number of cells counted; and
error bars show standard error of the mean. Diagrams show the linear
function used to calculate the length of the cell cycle, according to
Takahashi et al. [39]; abscissae indicate time (in hours); ordinates
show LI of wt (A) or lipofected (B) cells; and Tc and Ts estimate the
duration in hours of cell cycle and S phase, respectively. Tc and Ts of
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control-lipofected cells (not shown) are virtually the same as those of
st. 34 wt cells.

In wt retinas, the proportion of cycling cells, expressed as 10 h LI, is
higher at st. 30 (32% = 0.34% standard error of the mean) than at st.
34 (23% * 0.1% standard error of the mean). This proportion, at st.
34, is even higher in c¢dk2/cyclinA2-lipofected cells (45% = 0.1%
standard error of the mean) and in XE2F-lipofected cells (48% = 2%
standard error of the mean), which both delay the exit from the cell
cycle.

In wt retinas, the average cell cycle length, as evaluated by Tc value,
increases from st. 30 (Tc = 5.1 £ 1.3 h) to st. 34 (Tc = 8.1 = 0.6 h).
Notably at st. 34, XE2F lipofection significantly reduces Tc (Tc=5.56 *
1.2 h) compared to control cells of the same age (Tc = 8.1 = 0.6 h),
whereas Tc is not significantly affected by cdk2/cyclinA2 lipofection (Tc
=7.8 = 0.9 h). The changes in Tc observed among different types of
cells are poorly affected by Ts, which ranges from 0.9 to 1.4.

Found at DOIL: 10.1371/journal.pbio.0040272.sg005 (1.7 MB JPG).
Table S1. In Silico Screening for Candidate miRNA Domains

Table S1 shows X. laevis (Xla-mir-), Danio rerio (dre-let/mir-), and Homo
sapiens (has-mir-) putative miRNA domains present in the 3" UTR of
Xotx5b, Xvsx1, and Xotx2. Among the 30 X. laevis mature miRNAs so far
isolated, 27 (90%) show perfect sequence homology with miRNAs of
other species [44]. Because of the low number of annotated Xenopus
miRNAs and the extreme evolutionary conservation of the mature
miRNA sequence, it was reasonable to search also for heterologous
domains in the 3’ UTR of the three genes. The MIRanda software [45]
was used to screen among the miRNA sequences from the three
species annotated in the Sanger miRNA registry (http://microrna.
sanger.ac.uk). Only results with energy values lower than —20.00 kcal/
mol and score values higher than 100 for at least one of the three
UTR are shown. These two thresholds were used in association with
gap-open and gap-elongation parameters —8.0 and —2.0, respectively,
to ensure high stringency [46]. Sites columns report the number of
candidate domains in the corresponding 3" UTR.

A total number of 42 different miRNAs show in silico high binding
affinities for the 3" UTR of Xotx5b (n=20), XvsxI (n=28), and Xotx2 (n
= 15), four of them (in bold), sharing sites for all three UTRs.
Interestingly, two of these shared miRNAs (dre-mir-34 and dre-mir-
432) show multiple domains in Xvsx1l and Xotx2 but not in Xotx5b
UTR. miRNA domains are reasonably well dispersed over the three
UTR sequences in all three genes under consideration. No obvious
nucleotide conservation was found among the three 3" UTRs. The
selected miRNAs are candidates for the translational repression of
Xotx5b, Xvsx1, and Xotx2. However, the presence of the human and D.
rerio-selected miRNAs also in Xenopus, as well as the expression of all
selected miRNAs in developing retina and their hypothetical role in
development, remain to be validated.

Found at DOI: 10.1371/journal.pbio.0040272.5st001 (20 KB XLS).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
ber for the XuvsxI coding sequence is DQ324366. 3" UTRs discussed in
this paper were amplified by RT-PCR based on the following
GenBank sequences: Xotx5b (BC077545), Xusxl (BC044049), and Xotx2
(BCO77357).
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