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Comparative genome sequence analysis is powerful, but sequencing genomes is expensive. It is desirable to be able to
predict how many genomes are needed for comparative genomics, and at what evolutionary distances. Here I describe
a simple mathematical model for the common problem of identifying conserved sequences. The model leads to some
useful rules of thumb. For a given evolutionary distance, the number of comparative genomes needed for a constant
level of statistical stringency in identifying conserved regions scales inversely with the size of the conserved feature to
be detected. At short evolutionary distances, the number of comparative genomes required also scales inversely with
distance. These scaling behaviors provide some intuition for future comparative genome sequencing needs, such as
the proposed use of ‘‘phylogenetic shadowing’’ methods using closely related comparative genomes, and the
feasibility of high-resolution detection of small conserved features.
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Introduction

Comparative genome sequence analysis is a powerful
means of identifying functional DNA sequences by their
evolutionary conservation [1,2,3]. It will be instrumental for
achieving the goal of the Human Genome Project to
comprehensively identify functional elements in the human
genome [4]. How many comparative genome sequences do we
need? Where is the point of diminishing returns, after which
sequencing another koala or bat does not contribute
significant information to human genome analysis? Since
sequencing is expensive and capacity remains limited, one
would like to address this issue as rigorously as possible.

Empirical evaluations of candidate comparative genomes
have become important in allocating sequencing resources.
Pilot sequencing and analysis in Saccharomyces and Drosophila
species were done to choose appropriate species for
comparative genome sequencing [5,6]. A pilot sequencing
effort is underway for a number of mammalian genomes to
evaluate their utility for human genome analysis [4]. Given
the complexity of genomes, empirical studies are necessary.
However, one would also like to complement this with higher-
level, general insights that are independent of the details of
particular analysis programs, organisms, and genomic fea-
tures.

Cooper et al. proposed a mathematical model of one
important type of comparative genome analysis [7]. They
framed a question amenable to quantitative modeling: how
many comparative genomes, and at what distances, are
required to detect that an individual base in a target genome
is ‘‘neutral’’ (inferred to be evolving at the neutral rate) as
opposed to ‘‘conserved’’ (inferred to be under purifying
selection)? Their model infers a nucleotide site to be
conserved if it is 100% identical to homologous sites in N
comparative genomes. The key parameters are the independ-
ent branch lengths (di) contributed to a phylogeny by each new
comparative genome (i),measured in neutral substitutions per
site. More neutral evolutionary distance makes it more likely
that neutral sites will have one or more substitutions in the
alignment. Analytical strength increases as a function of the

total neutral branch length in the phylogeny (
P

i di), because
the probability that a neutral site has no changes in any
branch of the phylogeny (and thus would be misclassified as
conserved) is taken to be approximately e�

P
i di . Based on the

model, they concluded that 5.0 neutral substitutions/site of
total branch length (about 10–20 well-chosen mammalian
genomes) would approach ‘‘single nucleotide resolution’’ for
human genome analysis, with a false positive probability (FP)
of less than e�5.0 per invariant site.
This model has some limitations that seem serious enough

to question the proposed target of 10–20 mammalian
genomes. Most importantly, it assumes that conserved sites
are invariant. Few conserved features are absolutely invari-
ant. If invariance is required to infer conservation, the
fraction of truly conserved sites that are wrongly inferred to
be neutral (because a substitution is seen in one of the
comparative genomes) asymptotically approaches one as the
number of comparative genomes or their evolutionary
distance increases. We want to consider not just our FP, but
our statistical power—our ability to successfully detect
features that are conserved.
Additionally, single nucleotide resolution may not be the

most relevant goal. It is useful to consider single nucleotide
resolution as an ultimate limit on comparative analyses—one
can imagine plausible analyses of single bases, and certainly
individual codons—but we are mostly concerned with
identifying conserved features of greater length, such as
exons or transcription factor binding sites.
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Nonetheless, the level of abstraction introduced by Cooper
et al. is attractive. There is a need for better intuitions for
planning comparative genome sequencing. How many more
comparative genomes are needed as one looks for smaller and
smaller conserved features—from exons to regulatory sites to
single codons or even single nucleotides? How many more
genomes are needed as one uses more and more closely
related comparative genomes, in order to improve the
chances that homologous lineage-specific features are found
and correctly aligned [8,9]? Precise answers will be elusive,
because genome biology is complex, but perhaps there are
rough, useful scaling relationships amongst comparative
genome number, evolutionary distance, and feature size. To
explore this, I have extended the ideas introduced by Cooper
et al. and developed an abstract model that seems to capture
the essential flavor of comparative genome analysis.

Results/Discussion

Description of the Model
A ‘‘feature’’ is a sequence of L nucleotide sites in the target

genome. We assume we have a correct, ungapped multiple
sequence alignment of this sequence to N homologous
features from N additional comparative genomes, and that
the L sites are independent.

In the NL nucleotides in the aligned comparative sequen-
ces, we count how many changes are observed relative to the
target feature sequence; call this c. If c is greater than some
threshold C, we infer the feature is evolving at the neutral
rate. If, on the other hand, c is less than or equal to C, we infer
the feature is conserved.

We assume that each comparative genome is independently
related to the target genome by a branch length of D neutral
substitutions per site, that is, a uniform star topology, with
the target at the root, and equal length branches to the
comparative genomes at the leaves. A uniform star topology
allows us to model how evolutionary distance affects
comparative analysis at an abstract level, as a single variable
D, independent of the details of real phylogenies. The
biologically unrealistic placement of the known target at
the root simplifies the mathematics, and does not significantly
affect the results compared to making the more realistic
assumption of an unknown ancestor at the root of a tree with
Nþ 1 leaves, including the target.

We assume that the only difference between conserved
features and neutral features is that conserved features evolve
more slowly, by a relative rate coefficient x. A conserved site
accumulates an average of xD substitutions, whereas a neutral
site accumulates an average of D substitutions. x = 0 for an
absolutely conserved feature; x = 1 for a neutrally evolving
feature. At short evolutionary distances, we expect about c =
DNL changes in neutral features, and c = xDNL changes in
conserved features, with binomial densities for P(c) around
those values.

To model the probability that two nucleotides diverged by
D or xD substitutions will be observed to be identical (to deal
with multiple substitutions at one site), we assume a Jukes-
Cantor process in which all types of base substitution occur at
the same rate [10]. Under a Jukes-Cantor model, the
probability that two sites that have diverged by D substitution
events are identical is 1

4 þ 3
4 e

�4
3D, which approaches 25% at

infinite divergence.

Given these assumptions, the FP in a comparative analysis
(the probability that we erroneously infer that a neutral
feature is conserved) is the probability that a neutral feature
happens to have C or fewer observed changes (a cumulative
binomial distribution):
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and the false negative probability (FN; the probability that we
erroneously infer that a conserved feature is neutral) is the
probability that a conserved feature happens to have more
than C observed changes:

FN ¼ Pð.C changesjconservedÞ ¼
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The model therefore depends on four parameters: the size
of the conserved feature, L, the relative rate of evolution of
the conserved feature, x, the number of comparative
genomes, N, and the neutral distance of the comparative
genomes from the target genome, D. The threshold C is
usually not an input parameter (except in the special case of
invariance; C = 0). Rather, we find the minimum genome
number N (or feature size L) at which there exists any cutoff C
that can satisfy specified FN and FP thresholds.
The Cooper et al. model is essentially a special case where

L=1 (single nucleotide resolution), x= 0 (conserved sites are
always invariant), C = 0 (only invariant sites are inferred to be
conserved), and FN= 0 by definition (if all conserved sites are
invariant, and all invariant sites are inferred to be conserved,
then all conserved sites are detected). Also, instead of using an
evolutionary model to account for multiple substitutions at
one site (saturation), Cooper et al. make a Poisson assumption
that the probability of observing no change at a comparative
site is e�D, which is only valid for small D.
Themodel discriminates features based on their relative rate

of evolution. The same equations could be used to detect
features evolving faster than the neutral rate (positively
selected features), or to detect highly conserved features on a
background of less strongly conserved sequence, as, for
instance, transcription factor binding sites in an upstream
regionoften appear [11,12]. For simplicity, I will only talk about
discriminating ‘‘conserved’’ from ‘‘neutral’’ features here.

Reasonable Parameter Values
The feature length L and conservation coefficient x

abstractly model the type of feature one is looking for. I use
L = 50, L = 8, and L =1 as examples of detecting small
coding exons, transcription factor binding sites, and single
nucleotides, respectively, solely by sequence conservation. On
average, conserved exons and regulatory sites appear to
evolve about 2- to 7-fold slower than neutral sequences
(x = 0.5–0.15) [7,8,13,14,15]. I use 5-fold slower (x = 0.2) in
most cases discussed below. Typically, one doesn’t know L or
x when looking for novel features. These two parameters
behave as bounds: if one can detect a specified feature, larger
and/or more conserved features are also detected.
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The model’s single distance parameter, D, abstractly
represents the independent neutral branch length contrib-
uted by each comparative genome [7]. In a phylogenetic tree
of the target with N . 1 comparative genomes that are as
independent from each other as possible, we can roughly
consider the independent branch length contributed by each
comparative genome to be one-half its pairwise distance to
the target genome, because in a real tree (with unknown
common ancestors, as opposed to placing the target at the
root of a uniform star topology) all comparative genomes
share at least one branch leading to the target. Thus the
figures highlight D = 0.03, 0.19, and 0.31 as ‘‘baboon-like,’’
‘‘dog-like,’’ and ‘‘mouse-like’’ distances from human, 50% of
one set of pairwise neutral distance estimates of 0.06, 0.38,
and 0.62, respectively, arbitrarily chosen from the literature
[7]. These labels are solely to give some intuition for what the
model’s D parameter means. The correspondence between D
and real branch lengths is crude. Real neutral distance
estimates are a subject of substantial (up to about 2-fold)
uncertainty in the literature, and there are regional varia-
tions and strong context effects on neutral substitution rates
in mammalian genomes [16,17]. More importantly, the
model’s uniform star topology, though it allows a high-level
analysis in terms of just two parameters, D and N, makes
direct comparison to real phylogenies difficult. Large
numbers of equidistant, independently evolved mammalian
genomes do not occur in reality. Real genomes are not
independent, and will generally contribute an independent
neutral branch length of less than one-half of their pairwise
distance to the target genome.

Critically, the model assumes that homologous features are
present, correctly detected, and correctly aligned. In reality,
with increasing evolutionary distance, features can be gained,
lost, or transposed [14,18,19,20,21], the ability to detect
homology by significant sequence similarity decreases, and
alignments become less reliable [22]. The frequency of effects
like loss, gain, and transposition depend on the biology of
particular types of features, so departures from the model’s
‘‘alignment assumptions’’ are difficult to model abstractly.
However, minimally, we can posit a maximum neutral
distance, Dmax, beyond which the alignment assumptions will
not hold, based just on the ability of alignment programs to
recognize and align homologous DNA sequences. Roughly
speaking, reliability of DNA sequence alignments begins to
break down at about 70% pairwise identity. For alignments of
conserved features evolving 5-fold slower than neutral, this
suggests Dmax ; 0.15/0.2 = 0.75; Figures 1 and 2 show results
out a little further, to Dmax = 1.0.

Two different FP settings are used as illustrative examples:
0.006 (the e�5 threshold used by Cooper et al. [7]) and the
more stringent 10�4. For consistency, the same two FP
thresholds are used to illustrate scaling behaviors for all
three feature sizes (L = 1, L = 8, and L = 50). However, for a
real analysis, one wants to consider the appropriate choice of
FP carefully. In a genome sequence of length M, the total
number of false positive feature predictions in all over-
lapping possible windows of length L is M� Lþ 1, multiplied
by FP per feature. In most analyses, we would probably merge
overlapping predicted features into a single predicted
conserved region, resulting in a lower number of false
positive regions in a genome. This overlap correction (from
the number of false features to the number of false regions)

depends on the parameters, but for the parameters in Figures
1 and 2 it varies from 1.5- to 2-fold less for L = 8 sites and 4-
to 8-fold less for L = 50 sites, based on simulations. Thus, for
example, FP = 10�4 corresponds to one false positive feature
per 10 kb, and (for the parameters here) somewhere between
one false positive conserved region per 20–100 kb, depending
on the feature. For ‘‘small exon’’ detection, this means
40,000–300,000 false region/feature predictions in the 3-Gb
human genome; for ‘‘transcription factor binding sites,’’ this
means one false positive feature or region per 10–20 kb. FP
= 10�4 therefore seems a reasonable stringency for L = 8 or
L = 50 feature analyses. If one carried out a single nucleotide
resolution analysis on a genome-wide scale, FP = 10�4 would
mean that 99.8% of the predictions for conserved bases in
the 3-Gb human genome would be correct, assuming about
5% of the bases are truly conserved and detected with high
sensitivity. However, it is likely that one would actually carry
out single nucleotide resolution analyses on a subset of
conserved features that had already been identified (exons,
for example), so a less stringent FP might be required. The
setting of FP = 0.006 might therefore be more appropriate
for evaluating single nucleotide resolution, where FP is closer
to the traditional statistical choices of a 0.01 or 0.05
significance level.

Single Nucleotide Resolution Requires Many Genomes
The Cooper model concluded that for invariant conserved

sites, sequencing comparative genomes to achieve a total
branch length of five neutral substitutions per site would give
single nucleotide resolution, with a FP of e�5 (0.006) [7]. Under
my model, detection of invariant nucleotides takes about 17
genomes at mouse-like distances, essentially as predicted by
Cooper et al. (Figure 1).

Figure 1. Number of Genomes Required for Single Nucleotide Resolution

The red line plots genome number required for identifying invariant
sites (x = 0) with a FP of 0.006, essentially corresponding to the
Cooper model [7]. Black lines show three more parameter sets:
identifying 50% (FN , 0.5) of conserved sites evolving 5-fold slower
than neutral (x = 0.2) with FP , 0.006, doing likewise but with a
more-stringent FP of 0.0001, and identifying 99% of conserved sites
instead of just half of them. Values of N at baboon-like, dog-like, and
mouse-like neutral distances are indicated with diamonds, squares,
and circles, respectively. Jaggedness of the lines here and in
subsequent figures is an artifact of using discrete N, L, and cutoff
threshold C to satisfy continuous FP and FN thresholds.
DOI: 10.1371/journal.pbio.0030010.g001
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However, the picture changes when one considers com-
prehensive detection of features that are conserved but not
invariant (Figure 1). To detect 50% of sites evolving 5-fold
slower than neutral, we need 25 comparative genomes at
mouse-like distances at the same (arbitrary) false positive
threshold of less than 0.006. For a comprehensive screen that
would detect 99% of conserved single nucleotides with a FP
of less than one per 10 kb, the model predicts about 120
comparative genomes at mouse-like distances are needed.

Detectable Feature Size Scales Inversely with Genome
Number

The large genome numbers in Figure 1 might appear to
conflict with the known power of comparing just two genomes,
such as human and mouse. This is because recognizing
conserved sequences is easier than recognizing conserved
single nucleotides; the size of the conserved feature matters.

Figure 2 shows how many genomes are required to detect
small features like transcription factor binding sites (L; 8) or
larger features like short coding exons (L ; 50). One genome
at about human/mouse distance is sufficient for reasonable
strength in coding exon detection. For a range of reasonable

sensitivity and specificity stringencies, three to 15 genomes at
human/mouse distance are sufficient for detecting tran-
scription factor binding sites.
There is a general, intuitive explanation for this. The

strength of an analysis will depend on the difference in the
expected number of substitutions in neutral features versus
conserved features. This difference will be proportional to
NL, the total number of aligned sites. Thus, for a constant
stringency, the required number of comparative genomes is
expected to scale inversely with the size of the feature to be
detected (N } 1/L): to detect conserved features ten times
smaller, it takes ten times as many comparative genomes.
(This scaling behavior is seen directly later.)

No Clear Optimum for Evolutionary Distance, but Close
Distances Disfavored
Figures 1 and 2 show two other notable behaviors. First,

there is no sharp optimum for the neutral distance D. The
number of genomes required is relatively flat for a wide
range, from about 0.4 to well beyond 1.0. Within a broad
range, the exact choice of one comparative genome versus
another has little impact.
This is shown more directly in Figure 3, in which a measure

of overall statistical strength is plotted against neutral
distance over an unrealistically long range of D, out to 4.0
substitutions/site. For conserved features evolving 5-fold

Figure 2. Number of Genomes Required for 8-nt or 50-nt Resolution

Top: identifying 8-nt conserved features (‘‘transcription factor
binding sites’’; L = 8); bottom: identifying 50-nt conserved features
(‘‘exons’’; L = 50). Parameter settings are indicated at top right, in
same order as the plotted lines. The parameters are the same as those
used in Figure 1.
DOI: 10.1371/journal.pbio.0030010.g002

Figure 3. A Measure of Statistical Strength As a Function of Neutral

Evolutionary Distance

One convenient threshold-independent measure of the strength of a
comparative analysis is an expected Z score, the expected difference
Dc in the number of substitutions in a neutral feature alignment
versus a conserved feature alignment, normalized to units of standard
deviations. E(Z) is readily calculated for the binomial distribution:

EðZÞ ¼ EðDcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDcÞ

p ¼
ffiffiffiffiffiffiffi
NL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn � pc

pnð1� pnÞ þ pcð1� pcÞ

r� �
; ð3Þ

where pn and pc are the probabilities of observing a change at one
aligned comparative nucleotide according to the Jukes-Cantor
equation.
The plots here are for N = 5 and L = 8. The shape of the curve is
independent of N and L, while the absolute magnitude of Z scales asffiffiffiffiffiffiffi
NL

p
. The x-axis is shown from D = 0 to D = 4, beyond the more

realistic range of Figures 1 and 2, to show the mathematically
optimum D if homologous conserved features were present,
recognized, and accurately aligned at any D.
DOI: 10.1371/journal.pbio.0030010.g003
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slower than neutrality, assuming that alignment assumptions
hold, the optimum distance according to the model is about
1.4 neutral substitutions/site, four to five times the mouse-like
distance. However, for many kinds of features, at such long
evolutionary distances the alignment assumptions are likely
to break down. Because the mathematically optimal distance
for discriminating idealized conserved and neutral features
lies outside the range where the alignment assumptions are
likely to hold, it may not be particularly meaningful to
imagine a uniquely optimal choice of evolutionary distance
for comparative genome analysis; optimal choices will be
problem-dependent. (This is not surprising, of course, but
perhaps useful to see clearly in a simple model.)

The second behavior worth noting in Figures 1 and 2 is that
at close evolutionary distances, the necessary number of
comparative genomes needed ramps up steeply. For instance,
at human/baboon distances of 0.03, achieving equivalent
statistical strength requires about seven times as many
comparative genomes as when using human/mouse distances
(see Figure 2).

There is another general intuition behind these results. For
D � 1, the expected number of substitutions is DNL in a
neutral feature and xDNL in a conserved feature. So, for a
constant statistical stringency, the number of genomes
required will scale inversely with evolutionary distance, when
the distance is small. At larger distances, this scaling ceases as
the number of observed changes saturates.

The strong scaling of N at small distances D has implications
for the use of ‘‘phylogenetic shadowing’’ using closely related
genomes [8,9]. It is clear that the use of closely related genomes
is advantageous in several ways: alignments are more accurate,
one can accurately align a surrounding neutral region to
detect small embedded conserved regions, and homologous
features are more likely to be present (for instance, primate-
specific features in human analyses). However, the model
illustrates how these advantages are accompanied by a
significant cost in statistical strength (see Figure 3). When
using comparative species at short evolutionary distances,
species choice matters a lot. Within primates, for example,
divergence times from human vary about 10-fold (;6 to ;65
million years); if one aims to use ‘‘primate sequences’’ for
human genome analysis, there is a large difference between
using distant primates (lemurs or New World monkeys) versus
close primates (great apes).

Resolution and Stringency as a Function of Genome
Number

How much additional information does each new com-
parative genome sequence give us? The top panel in Figure 4
plots sensitivity and specificity as the number of comparative
genomes increases, for an analysis of transcription factor
binding site–like features. The scaling behavior is expected to
be (roughly speaking) log(FP or FN) } � N, based on the
cumulative binomial expressions for FP and FN. That is, each
additional genome reduces FP or FN by a roughly constant
multiplier; for the parameters used here, every three or four
more comparative genomes reduces FP by 10-fold. The
bottom panel in Figure 4 plots resolution L as a function of
N, showing the expected L } 1/N scaling. Each doubling of the
number of comparative genomes increases resolution about
2-fold.

Good Agreement with More Realistic Simulations
The model’s simplicity is useful. By just counting the

number of substitutions in conserved versus neutral features,
the reasons for the scaling behaviors are more intuitively
obvious. However, the assumptions required for this level of
simplicity are questionable. In real DNA sequences, the Jukes-
Cantor model’s simple assumptions are violated in many
ways; transitions are more frequent than transversions, base
composition is not uniform, and mutation rates show strong
context dependence [17]. In a real analysis, we would use
probabilistic methods to compare the log likelihood ratio
(LLR) of a phylogenetic tree under competing hypotheses of
two different rates [8,23,24], so we can deal with real
phylogenies and different expected rates of substitutions at
different bases.
The relative predicted scaling behaviors are unlikely to

change under more realistic simulations. However, for the

Figure 4. Increase in Stringency and Resolution with Increasing Genome

Number

Top: black line shows improvement in specificity (FP) for tran-
scription factor (TF) binding site–like features (L = 8, x = 0.2) as
comparative genome number increases, for FN = 0.01 (99% of sites
detected), and genomes of D = 0.31 (mouse/human-like distance).
Red line shows improvement in sensitivity (FN) for the same
parameters and a FP threshold of 0.0001. Shown as a log-linear plot
to show the expected rough log(FP or FN) proportional to�N scaling.
Bottom: resolution (size of detectable feature, L) as a function of
comparative genome number, plotted on log-log axes to show the fit
to the expected L } 1/N scaling. All four lines assume goals of FN ,
0.01 and FP , 0.0001. Black lines are for identifying conserved
features evolving 5-fold slower than neutral (x = 0.2), using baboon-
like (D=0.03), dog-like (D=0.19), or mouse-like (D=0.31) genomes.
Red line is for identifying invariant features with mouse-like genomes.
DOI: 10.1371/journal.pbio.0030010.g004
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model to be useful as a rough guide for required genome
number under different comparative analysis scenarios, at a
minimum we want to know whether the absolute predicted
numbers would be substantially different for features evolv-
ing under a more realistic evolutionary model, such as the
Hasegawa-Kishino-Yano (HKY) model [25], which models
nonuniform base composition and transition/tranversion rate
bias, and if we analyzed those data with LLR statistics instead
of simply counting substitutions.

Therefore, I performed the following computational
simulation study. Synthetic ‘‘neutral’’ and ‘‘conserved’’
feature alignments were generated using two HKY models
that differed in evolutionary rate by a factor of x. The rates in
the HKY models were parameterized with an AT-biased base
composition of 33% A, 17% C, 17% G, and 33% T, and a
biased transition/transversion rate ratio of 4.0. A feature
alignment was simulated by choosing a random L-mer (using
the specified base composition) as the target feature, then
generating N homologous features from it with substitutions
according to an HKY conditional substitution matrix at
distance D. For each dataset, 103 conserved feature align-
ments and 106 neutral feature alignments were generated.
These alignments were then scored under the two HKY
models and ranked by LLR score. This was repeated for
increasing N until an LLR score threshold existed that could
satisfy the chosen FP and FN thresholds. I then reproduced
the analyses in Figures 1 and 2 using the HKY/LLR simulation
for the 27 highlighted points with x = 0.2. That is, for the 27
combinations of D = 0.03, 0.19, or 0.31; L = 1, 8, or 50; and
(FP, FN) = (0.0001, 0.01), (0.0001, 0.5), or (0.006, 0.5), I
determined the minimum number of genomes required to
achieve the chosen thresholds.

This analysis showed that the predictions of the simple
model’s equations and the results of the HKY/LLR simu-
lations are in close agreement. The maximum deviation was
15%. For example, for the [D = 0.19, L = 1] points where the
model predicts needing N = 183, 89, and 40 for the different
values of FP and FN, the HKY/LLR simulation predicts
needing N= 210, 80, and 35; for the [D= 0.19, L= 8] points,
the model predicts N = 23, 12, and 5, and the simulation
predicts N = 24, 11, and 5; and for the [D = 0.19, L = 50]
points the model and simulation both predict N= 4, 2, and 1.

More significant discrepancies appear at larger distances. A
simple Jukes-Cantor model has only one substitution rate, so
all types of substitutions saturate equally fast. In an HKY
model, some substitution rates are faster than others.
Intuitively, one expects an HKY model to be able to extract
information from slower, less quickly saturated substitutions
at longer distances, resulting in more discrimination at large
D than the simple model predicts. This effect appears at
distances of D . 2.0–3.0 or so: for instance, for [x = 0.2, L =
8] features, to achieve FP , 0.0001 and FN , 0.01 for
distances of D = 1, 2, 3, 4, 5, and 10, the simple model
predicts needing N = 8, 8, 11, 17, 26, and 335 genomes,
respectively, whereas HKY/LLR simulations predict needing
N = 8, 9, 9, 13, 17, and 82 genomes. Thus, the simple model’s
approximation breaks down somewhat at larger distances,
beyond the D , 1 range that is considered here to be
reasonable for comparative genomics.

Additionally, nonuniform base composition causes some
composition-dependent spreading around the mean N that is
not predicted by the simple model. For instance, GC-rich

features are more easily detected than AT-rich features when
substitution rates are biased towards high AT composition.
Additional HKY/LLR simulations, using the same HKY
matrices as above but specifically looking at poly-A features
versus poly-C target features, show this effect; for instance, for
[x = 0.2, L = 8] features at D = 0.19, to achieve FP , 0.0001
and FN , 0.01, we need at least N = 24 genomes to detect
features on average, but specifically we need N = 19 for poly-
C/G features and N = 29 for poly-A/T features.

Reasonable Agreement with Available Data
One also wants to see that the model’s predictions do not

disagree with published results, at least to the extent that it is
possible to crudely compare real phylogenies to the
abstracted uniform star topology of the model. Three
examples follow.
Cooper et al. estimated that the mouse and rat genomes

suffice for about 50-nt resolution of human conserved
features [26]. The independent branch lengths to human,
mouse, and rat are roughly 0.3, 0.3, and 0.1 neutral
substitutions/site; the rat is close to the mouse, so this
situation is difficult to fit with a single D. However, using
either N= 1 and D= 0.6 (pairwise comparison to one rodent
using one full pairwise distance for D), or N =2 and D = 0.23
(approximating D as an average of three independent branch
lengths), or N= 2 and D= 0.35 (approximating D as one-half
the average pairwise distances from human to mouse and rat),
the model predicts that 90% of 50-nt features with x = 0.2
can be detected with a reasonable FP of between 0.0003 and
10�5; but for features just half that size (L=25), FP collapses to
between 0.02 and 0.006 (one false prediction every 50–150 nt).
Boffelli et al., in introducing ‘‘phylogenetic shadowing,’’

used 13–17 primate sequences with a total independent
branch length of about 0.6 neutral substitutions/site to
analyze conserved sequences smoothed in 50-nt windows,
and conserved regions down to 40–70 nt were detected
effectively [8]. The model predicts that for N = 15 and
D = 0.04 (average independent branch length of 0.6/15), one
can detect 90% of 50-nt, x = 0.2 features with a FP of 10�5;
but for 25-nt features, FP collapses to 0.003 (one false
prediction per 300 bp).
Kellis et al. and Cliften et al. reported comparative analyses

to identify transcription factor binding sites in Saccharomyces
cerevisiae using alignments of intergenic regions to three
comparative Saccharomyces genomes, with a total independent
branch length of about 0.8–0.9 [11,12]. ForN=3andD=0.27–
0.30 (average independent branch length of 0.8/3 to 0.9/3), the
model predicts that binding site–like features (L= 8, x= 0.2)
would be detected with a FP of 0.001–0.002 (about one false
predictionperupstreamregion) anda sensitivity of about 25%,
suggesting that these data are barely sufficient to identify
individual short conserved features. Indeed, though both
research groups showed examples of highly conserved individ-
ual sites, both groups analyzed their data primarily at the level
of detecting motif consenses, rather than attempting to detect
individual features genome-wide. That is, they required that
the samemotif be found conserved inmultiple places upstream
of multiple genes. This is a data aggregation strategy, multi-
plying the effective L by the number of copies of the feature. In
this way, even when only a fraction of individual features are
identified, the existence of a conserved consensusmotifmay be
inferred from the average conservation of the aggregated data.
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Limitations on the Generality of These Conclusions
The model assumes a pure, brute force detection of

individual conserved features by comparative analysis. For
many particular problems, one can leverage additional
information and reduce the number of comparative genomes
needed. Data aggregation strategies are one example (for
instance, detecting that a particular consensus motif is
conserved more often than expected, averaged across all
individual occurrences [27]). Another strategy is to combine
sequence conservation data with other experimental data (for
instance, using microarray data to detect that a marginally
conserved motif is also statistically associated with a
coordinately regulated set of genes [28]).

Some features are not just conserved, but also show
informative patterns of substitution, insertion, and deletion,
so we can gain power by using feature-specific evolutionary
models instead of a general conservation screen. For instance,
coding regions predominately show substitutions in wobble
positions and strong selection against insertions/deletions,
and those insertions/deletions that remain will generally
preserve frame [11]. Conserved structural RNAs reveal their
basepaired secondary structure interactions by compensatory
basepair mutations [29]. In such analyses it becomes
important to see enough evolutionary events to distinguish
one kind of conserved feature from other kinds of conserved
features, not just to discriminate conserved from neutral.
Because different conserved features evolve at different rates,
one would generally want to have a range of comparative
genomes at different distances, so that for any given
conserved feature with its particular relative rate of evolu-
tion, one can find alignments in a ‘‘sweet spot’’ with the right
amount of divergence.

Finally, there are other important uses of comparative
genomics in addition to DNA sequence analysis of conserved
elements. For example, evolutionary/developmental studies
choose species based on phylogenetic position, and popula-
tion genetics studies choose multiple individuals within the
same species.

Concluding Remarks
The principal results here are two inverse scaling behaviors

that provide useful intuitions for planning comparative
genome sequencing. All other things being constant, the
required number of comparative genomes is inversely propor-

tional to detectable feature size, and at small evolutionary
distances, required genome number becomes inversely pro-
portional to the neutral distance to the comparative genomes.
Neither behavior is entirely surprising; the contribution of

an abstract model is to see them more clearly. Obviously, it
takes more comparative genomes to recognize smaller
features, though one may not have predicted a simple inverse
relationship between L and N. And it is already common to
use total independent neutral branch length as a measure of
the strength of a comparative dataset [7,8,9,30], which implies
an inverse relationship between genome number and evolu-
tionary distance, a relationship made explicit in a simplified
model where total independent branch length is ND.
The model also shows clearly that for two analysis

scenarios—identification of small conserved features and
the identification of lineage-specific conserved features in
closely related genomes—it will be useful to obtain large
numbers of comparative genome sequences. Since a small
number of comparative genome sequences are already
enabling powerful analyses, this may be surprising. Even for
simple conservation analyses, we have not begun to exhaust
the power of comparative genome analysis.

Materials and Methods

The model was implemented in several ANSI C programs,
which can be downloaded at http://www.genetics.wustl.edu/
eddy/publications/Eddy05.
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