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Abstract

Myelin is required for proper nervous system function. Schwann cells in developing nerves

depend on extrinsic signals from the axon and from the extracellular matrix to first sort and

ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin

α2β1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling

is integrated and if each molecule controls both axonal sorting and myelination is unclear.

Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin

signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III

by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We

provide evidence that excessive PKA activation amplifies promyelinating signals down-

stream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its

effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key tran-

scription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of

Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neurop-

athies associated with decreased laminin function are characterized by focally thick and

redundant myelin.

Author summary

Myelin is formed by the wrapping of glial cell membranes around axons and is required

for the fast conduction of nerve impulses and to support axons. In the peripheral nervous

system, myelin is produced by Schwann cells. Peripheral myelin defects cause debilitating

diseases, whose molecular pathogeneses are only partially understood. Here, we reveal for
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the first time how 2 crucial extracellular modulators of myelin formation, neuregulin 1

type III (Nrg1III) and laminin α2β1γ1 (Lm211), work together in the peripheral nervous

system. Although Lm211 was believed to promote myelination, we show that it can also

inhibit myelin formation by suppressing the activity of Nrg1III, limiting the activation of

its downstream signaling cascade. These results help to explain why certain inherited neu-

ropathies are characterized by hypermyelination and redundant myelin sheaths.

Introduction

Myelin is essential for rapid impulse propagation and the proper function of the nervous sys-

tem. Schwann cells (SCs) form myelin in peripheral nerves in 2 subsequent steps, radial sorting

of axons and myelination. During radial sorting, immature SCs segregate axons with a diame-

ter larger than 1 μm to the edge of embryonic axon bundles and then acquire a 1:1 relationship

with these axons and differentiate into promyelinating SCs. Immature SCs express the tran-

scription factor Oct6 (Pou3f1) that is later downregulated [1,2], while promyelinating SCs

express the transcription factor early growth response protein 2 (Egr2 or Krox20) that is neces-

sary to transition into wrapping and myelination [3]. A signaling pathway consisting of 30-50-

cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA), possibly via regulation

of Nfkb and Oct6, is required to achieve full Egr2 activation and myelination [2,4–7]. Egr2, in

turn, is the master regulator of myelin protein and lipid genes [reviewed in 8]. Following Egr2

activation, myelin-forming SCs start to elaborate a myelin sheath around axons. Myelin thick-

ness depends on the number of myelin wraps that a SC makes around an axon and is corre-

lated to axon diameter [9]. Signaling molecules that include Disc Large MAGUK scaffold

protein 1 (DLG1) and Phosphatase and Tensin homolog (PTEN) are then required to termi-

nate wrapping [10–12]. Finally, groups of small axons that are not radially sorted into a 1:1

ratio remain ensheathed by nonmyelinating SCs, which organize the associated axons into a

Remak bundle.

These developmental steps are regulated by the axonal growth factor neuregulin 1 type III

(Nrg1III) and by the extracellular matrix (ECM) component laminin α2β1γ1 (Lm211). How-

ever, how these 2 signals are integrated is unknown. Laminins in the basal lamina are required

for radial sorting by enabling cytoskeletal rearrangements needed for changes in SC morphol-

ogy [13,14]. The major SC laminin is composed of α2, β1, and γ1 chains, encoded by Lama2,

Lamb1, and Lamc1 genes, respectively. Mutations or targeted inactivation of Lama2 result in

radial sorting defects [13,15,16], as does inactivation of the genes encoding the Lm211 recep-

tors a6β1, a7β1 integrins, and dystroglycan [17–19].

Whether Lm211 also controls the initiation of myelin wrapping after radial sorting is

unclear. Experiments in vitro indicate that Lm211 promotes the initiation of myelination

[20,21], but this could simply represent Lm211 enabling the prerequisite step of radial sorting.

Lama2 deletion in vivo does not prevent myelination, but this could be explained by compen-

sation by other laminins that do not contain the α2 chain [16,22]. In addition, it has been

reported that Lm211 positively regulates myelin thickness [23], but in contrast with this find-

ing, laminin signaling via the α6β4 integrin receptor was recently shown to inhibit myelination

via serum and glucocorticoid-induced kinase 1 [24], and human biopsies from patients with

LAMA2 mutations show thickened and irregularly folded myelin sheaths [25,26]. Thus, the

role of Lm211 in myelination remains unresolved. On the other hand, it is well established that

the level of axonal Nrg1III is a key instructive signal for myelination [27,28] and regulates mye-

lin thickness [27–29]. Nrg1III promotes myelination by engaging the ErbB2/ErbB3 receptor
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tyrosine kinase, which in turn stimulates several signaling pathways, including PI3K/Akt,

Calcineurin and MAPK/ERK, which are thought to converge on Oct6 and Egr2 activation.

Although Nrg1III has a clear role in the initiation of myelination, its role during axonal sorting

has not been proven directly. A role for Nrg1III in radial sorting is suggested by the observa-

tion that SCs fail to ensheathe Nrg1III-deficient axons in vitro and by the fact that Nrg1III hap-

loinsufficiency causes defects in axon ensheathment in Remak bundles [27,30]. Thus, the role

that Nrg1III plays during axonal sorting is unclear. Finally, how Nrg1III signaling from axons

is integrated with Lm211 signaling from the basal lamina is poorly understood.

Here, using genetic epistasis experiments in vivo and in vitro, we show that Lm211 and

Nrg1III interact functionally. By modulating the expression of Nrg1III and Lm211, we show

that in early development and in small fibers, Lm211 inhibits Nrg1III-driven myelination, but

this effect is only revealed when the amount of Nrg1III is also altered. How does Lm211 inhibit

Nrg1III? cAMP and PKA are required in parallel to Nrg1III to initiate myelination, by func-

tioning as a switch that triggers Egr2 expression, but cAMP/PKA are not required for Egr2

maintenance [4,5,31]. Here, we show that Lm211 inhibits PKA activity and various signaling

steps downstream of Nrg1III. We propose that Lm211 limits Nrg1III signaling via PKA to pre-

vent precocious myelination during radial sorting, inappropriate myelination of small fibers

that normally do not become myelinated, and excessive myelin wrapping of small myelinated

fibers.

Results

SC primed by Lm211 requires Nrg1III to myelinate in vitro

It is known that laminins in the SC basal lamina are necessary for radial sorting [32–35], that

Lm211 promotes myelination in vitro [21], and can even replace ascorbic acid to induce myeli-

nation [20]. While this has been interpreted as Lm211 promoting wrapping and myelination,

Lm211 may instead only enable SCs to arrive into a 1:1 relationship with axons (promyelinat-

ing stage), which then leads to myelination upon Nrg1 activation independently of laminins.

To begin to make this distinction, we first asked if Lm211 could lead to myelination without

Nrg1III. We took advantage of the ability of Lm211 to replace ascorbic acid in inducing myeli-

nation in vitro and asked if wild-type SCs treated with Lm211 could myelinate Nrg1III-defi-

cient neurons. As reported [20], SCs myelinate wild-type neurons when exogenous laminin is

added to the media (Fig 1D), while no myelination was present without the addition of Lm211

(Fig 1A). However, Lm211 cannot induce myelination in the absence of Nrg1III (Fig 1J).

Fewer SCs were observed in culture with Nrg1III deficient axons, but Lm211 increased the

number of SCs (Fig 1M). This was not accompanied by an increase in SC proliferation (Fig

1N) but could be due to improved association of SC with Nrg1III-deficient neurons (Fig 1O–

1R). This experiment shows that Lm211 signals need to converge with those activated by

Nrg1III for myelination to proceed in vitro.

Nrg1III haploinsufficiency does not exacerbate the aberrant interactions

between Lm211-null SCs and axons

Myelination is preceded by radial sorting. While it is evident from the literature that Lm211

mutants have impaired radial sorting, a role for Nrg1III in this process is unclear. To test if

Lm211 and Nrg1III cooperate to regulate radial sorting, we performed a genetic interaction

experiment and asked if partial loss of Nrg1III (Nrg1III heterozygous null mice, as constitutive

nulls are embryonic lethal) worsen the radial sorting defects of Lama2−/− mice. We quantified

radial sorting defects in sciatic nerves at postnatal day 16 (P16) because Lama2−/− mice in the
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C57/BL6 background die around P21. At P16, radial sorting is completed in normal sciatic

nerves, all axons larger than 1 μm have been myelinated, and small bundles, hardly visible by

semithin sections (Fig 2A), contain small caliber axons that are beginning to differentiate into

mature, nonmyelinated Remak fibers. By electron microscopy (EM), the majority of axonal

bundles in wild-type nerves contained fewer than 50 axons that were usually smaller than

1 μm (Fig 2B, 2C and 2D). As previously reported, Lama2−/− sciatic nerve presents sizable bun-

dles of axons visible by semithin sections (Fig 2A, arrow), which contain large numbers of

naked axons including those with diameters >1 μm (Fig 2B, asterisks, Fig 2C and 2D), a sign

of impaired axonal sorting. Nrg1III+/− nerves contained abnormally ensheathed, small bundles

of axons (Fig 2B, red asterisk), as previously described [27], but no significant increase in the

number of naked axons per bundle (Fig 2B and 2C) or in the number of axons with diameter

>1 μm in bundles (Fig 2D). Importantly, Nrg1III haploinsufficiency did not increase the per-

centage of unsorted axons in Nrg1III+/−//Lama2−/− nerves (Fig 2). Finally, the levels of laminin

Fig 1. Laminin α2β1γ1 (Lm211) leads to myelination only in the presence of neuregulin 1 type III

(Nrg1III). Wild-type (WT) rat Schwann cells (SCs) cocultured with dorsal root ganglia (DRG) neurons from WT

(A-F) or Nrg1III−/− (G-L) mouse embryos were maintained in media with or without Lm211 (50 μg/mL), fixed and

stained for myelin basic protein (MBP) (green), neurofilament (red), and DAPI (blue). Lm211 induces myelination

only when SCs contact Nrg1IIIwt neurons. (M) Quantification of the number of SCs per field of view. (N) Number

of phosphorylated-histone3 (P-H3) positive nuclei in the cultures. Images are representative of 3 independent

experiments. n = 6 coverslips for each treatment. (O-R) Electron micrographs of the cultures show that Lm211

promotes ensheathment of WT axons by SC processes (pseudocolored in pink). Nrg1III−/−axons are not

ensheathed, but Lm211 improves the intermingling of SC and their processes (pseudocolored in pink) parallel to

axons. Bar = 50 μm in L; 2,5 μm in O. The numerical data used in M–N are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g001
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α2 protein were normal in Nrg1III+/− sciatic nerve at P3 and P16 (Fig 2E), indicating that

Nrg1III does not regulate Lm211 expression.

We conclude that the partial loss of Nrg1III in vivo does not cause significant defects in

radial sorting nor does it further aggravate radial sorting phenotypes due to loss of Lm211.

Lm211 inhibits Nrg1III-induced myelination of small fibers

We next asked if Lm211 and Nrg1III interacted genetically at later timepoints, i.e., during

myelination, using the same animals. Axonal Nrg1III levels regulate myelin thickness: Nrg1III
haploinsufficiency causes hypomyelination (thin myelin) while Nrg1III overexpression causes

hypermyelination (thick myelin) [28]. In contrast, the role of laminin in regulating the onset

or extent of myelination is unclear. Based on our initial hypothesis that Lm211 and Nrg1III are

Fig 2. Partial loss of neuregulin 1 type III (Nrg1III) does not impair axonal sorting and does not worsen the axonal sorting defects of laminin

α2β1γ1 (Lm211)-deficient mice. (A) Transverse semithin sections of sciatic nerves from the indicated genotypes at postnatal day 16 (P16). Lama2−/− and

Nrg1III+/−//Lama2−/− mice present with bundles of naked axons, which indicate defective radial sorting (arrows). (B) Electron micrograph analysis shows

unsorted bundles that contain numerous amyelinated axons with diameter >1 μm (asterisks) in Lama2−/− and Nrg1III+/−//Lama2−/− mice. Nrg1 III+/− nerves do

not contain unsorted axon bundles, but only defective Remak fibers (red asterisk). (C) Quantification of the number of axons contained in each bundle at P16.

(D) Quantification of the number of amyelinated axons with diameter >1μm per bundle in sciatic nerves at P16. The number of axons >1 μm is increased in

Lama2−/− mice (Lama2−/− 7.91% ± 2.5 versus wild-type (WT) 2.86% ± 1.9); but not in Nrg1III+/− mice (Nrg1III+/− 2.26 ± 1.0 versus WT 2.86% ± 1.9); in the

Nrg1III+/−//Lama2−/−, the percentage of unsorted axons is comparable to Lama2−/− mice (Lama2−/− 7.91% ± 2.5 versus Nrg1III+/−//Lama2−/− 7.93 ± 2.63). n = 3

mice per genotype; 1-way ANOVA with Bonferroni posthoc test for individual comparisons. (E) Western blot analysis shows that the levels of the α2 chain of

Lm211 are not decreased in sciatic nerves of Nrg1III+/− mice. Data are represented as mean value ± SD ***p� 0.001, n = 3 mice per genotype; Student t

test. Bar = 10μm in A, 2 μm in B. The numerical data used in C, D, and E are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g002
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both promyelinating signals, we asked if loss of Lama2 further reduced myelination in

Nrg1III+/− mice. As reported, sciatic nerves from Nrg1III+/− mice showed thinner myelin (Fig

3A and 3B). In contrast, sciatic nerves from Lama2−/− mice displayed no significant changes in

myelin thickness. To our surprise, nerves from Nrg1III+/−//Lama2−/− mice showed a return of

myelin thickness close to wild-type levels (Fig 3A and 3B). When the average g-ratio was plot-

ted against the diameter of the fibers, it became clear that the rescue was mainly due to an

effect on axons smaller than 2 μm (Fig 3C and 3D). We confirmed that the distribution of

axon diameters was not altered in the different genotypes (Fig 3E). This experiment shows that

loss of Lama2 suppresses the hypomyelination phenotype of Nrg1III+/− mice in small fibers.

Thus, in a genetic context in which Nrg1III-induced myelination is reduced, the role of Lm211

on myelination becomes evident. These data suggest a repressive role for Lm211 in the myeli-

nation of small caliber axons.

Overexpression of Nrg1III enhances radial sorting defects in Lama2−/−

mice

So far, we showed that Lm211 may inhibit Nrg1III-induced myelination (Fig 3), although we

could not reveal an interaction between the 2 molecules during radial sorting (Fig 2). To further

explore these results, we crossed mice that overexpress Nrg1III (Nrg1IIItg)[36] with Lama2−/−

mice and analyzed sciatic nerve morphology at P16 by EM. Nrg1IIItg nerves had normal Remak

bundles (arrow in B) and no abnormal unsorted bundles of axons (Fig 4A, 4B and 4C–4C”).

Unexpectedly, Nrg1IIItg//Lama2−/− sciatic nerves had more severe radial sorting defects than

Lama2−/− mice (Fig 4A), with a 3-fold increase in the number of unsorted axon bundles per sci-

atic nerve cross section (Fig 4C). This difference was present already at early stages in P5 sciatic

nerves (S1A and S1B Fig). Thus, Nrg1III overexpression enhances the Lama2−/− phenotype.

Fig 3. Loss of laminin α2β1γ1 (Lm211) does not affect myelin thickness, but rescues hypomyelination due to neuregulin 1 type III (Nrg1III)

haploinsufficiency. (A) Electron micrographs of sciatic nerves from mice of the indicated genotypes at postnatal day 16 (P16). (B) Quantification of g-

ratios. At least 150 axons per animal were quantified for 3 animals/genotype, *p < 0.05 by 1-way ANOVA multiple comparison test. (C) Scatter plot

displays and distribution (D) of g-ratios of individual fibers as a function of axon diameter shows that in the double mutant, the rescue in myelin

thickness mainly occurs on axons with diameters smaller than 2μm. (E) Distribution of diameter of myelinated axons. Bar = 2 μm. The numerical data

used in B-E are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g003
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Phenotypic enhancement suggests that the overexpressed gene, in our case Nrg1III, stimulates a

pathway that is inhibited by the loss-of-function gene, in our case Lama2 [37,38]. Thus, a possi-

ble explanation is that Lm211 limits Nrg1III signaling pathways, thereby preventing precocious

myelination of small-diameter fibers prior to the completion of axonal sorting and formation of

an appropriate 1:1 relationship. In agreement with this hypothesis, unsorted bundles in sciatic

nerves of Nrg1IIItg//Lama2−/− mice often contained axons that were myelinated by SCs before

reaching the promyelinating 1:1 stage (Fig 4D, arrows).

Perturbed SC number can cause radial sorting defects [39]. Since both Lm211 and Nrg1III

influence SC proliferation and survival [16,40], we asked if these parameters were synergisti-

cally altered in the double mutants and could explain the severe radial sorting phenotype. Dur-

ing radial sorting at P5, double mutants showed no increase in the percentage of TUNEL-

positive nuclei or statistically significant decrease in phosphorylated-histone3 (P-H3) positive

nuclei, and cell density was not changed (S1C Fig). At P16, there was a trend for increased apo-

ptosis and decreased proliferation in the double mutants, but the changes were minimal (less

Fig 4. Neuregulin 1 type III (Nrg1III) overexpression worsens the radial sorting defects of Lama2−/− mice. (A) Transverse

semithin sections of sciatic nerves from mice of the indicated genotypes at postnatal day 16 (P16) are shown. Nrg1IIItg//Lama2−/−

mice have more bundles of naked axons (unsorted bundles) than Lama2−/− mice (arrowheads). (B) Electron micrograph analysis

shows that in Lama2−/− and Nrg1III+/−//Lama2−/− nerves these unsorted bundles contain amyelinated, naked axons with diameter

>1 μm (asterisk), while in wild-type (WT) and Nrg1IIItg nerves, there are only Remak bundles that contain axons ensheathed and

smaller than 1 μm (arrow). (C) Number of unsorted bundles per nerve cross semithin section, showing a 3-fold increase in the

number of unsorted bundles in Nrg1IIItg//Lama2−/− (106.33 ± 5.7 versus 35.33 ± 0.5 Lama2−/− ***p = 0.0005 by Student t test; n = 3).

(C’): The number of Remak bundles on ultrathin electron microscopy (EM) sections is decreased in Nrg1IIItg//Lama2−/− and Lama2−/−

mutants (***p = 0.001 by 1-way ANOVA with Bonferroni multiple comparison test, n = 4). (C”): All mutant nerves have reduced

numbers of axons in Remak bundles on ultrathin EM sections (**p = 0.005; ***p = 0.001 by 1-way ANOVA with Bonferroni multiple

comparison test, n = 4). (D) Examples of precocious myelination of axons that have not been sorted into a 1:1 relationship (arrows).

Bar = 10 μm in A, 2 μm in B and D. The numerical data used in C–C” are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g004
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than 0.4% apoptotic cells) and did not reach statistical significance. At P16, we also detected a

decrease in cell density in Nrg1IIItg mice, probably due to thicker myelin, and an increase in

cell density in Nrg1IIItg/Lama2−/−, probably due to the reduction of myelinated fibers (S1D

Fig). Overall, differences in SC number do not appear to be a major cause for the increased

radial sorting defects observed in Nrg1IIItg/Lama2−/− mice.

The regulation of myelin thickness by Lm211 in Nrg1III-overexpressing

mice depends on axon caliber

Despite the severe radial sorting defects described in Nrg1IIItg//Lama2−/− nerves, some axons

were myelinated, giving us the opportunity to measure myelin thickness. As before, Lama2−/−

nerves at P16 had normal g-ratios, and, as reported, Nrg1IIItg sciatic nerves had decreased g-

ratios due to increased myelin thickness (Fig 5A and 5B). In the double Nrg1IIItg//Lama2−/−

nerves, the overall average g-ratio was intermediate between wild-type and Nrg1IIItg (Fig 5A

and 5B), but plotting the g-ratio as function of the axon diameter revealed that removal of

Fig 5. Laminin α2β1γ1 (Lm211) modulates myelin thickness in Nrg1IIItg sciatic nerves. (A) Postnatal day 16 (P16) electron micrographs of

sciatic nerves of the indicated genotypes. (B) G-ratios were calculated from at least 150 myelinated axons per mouse (n = 3). Nrg1IIItg mice show

decreased g-ratio, and Nrg1IIItg//Lama2−/− mice show an intermediate g-ratio between wild-type and Nrg1IIItg. Scatter plot display (C) or distribution

(D) g-ratios of individual fibers as a function of their axon diameter. The g-ratio of double mutants is opposite between small and large fibers, and the

increase in myelin thickness is mainly observed in small axons. (E) Distribution of the diameter of myelinated axons in the indicated genotypes at P16.

(F, G) Examples of aberrantly myelinated axons in Nrg1IIItg//Lama2−/− mice. In F, axons smaller than 1 μm are surrounded by a thick myelin sheath. In

G, examples of redundant myelin are shown. Bar = 2 μm in A, F, G. The numerical data used in B–E are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g005
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Lm211 further decreased the g-ratio of small fibers while progressively restoring to normal val-

ues the g-ratio of larger fibers (Fig 5C and 5D). This indicates that, as seen in Nrg1III+/− mice

(Fig 3), inhibition of Nrg1-induced myelination by Lm211 is predominant in small fibers.

Notably, axons much smaller than 1 μm, which should not be myelinated, were often sur-

rounded by a thick myelin sheath in double mutant nerves (Fig 5F). In Nrg1IIItg//Lama2−/−

nerves, even large fibers with normal or thin myelin sheaths often displayed abnormal and

redundant myelin, with infolding and signs of myelin degeneration (Fig 5G). These dysmyeli-

nating features were also occasionally observed in Nrg1IIItg animals and are characteristic of

certain forms of hereditary neuropathies, including those associated with deficiency of Lm211

[26]. Taken together, these data further substantiate the notion that Lm211 inhibits Nrg1III to

prevent inappropriate myelination of small, unmyelinated axons and to limit myelin thickness

in small caliber axons and the formation of redundant myelin in general.

Loss of Lm211 increases PKA activation

The phenotypic enhancement shown by the genetic experiments described above suggests that

Lm211 inhibits a pathway or a substrate that is normally stimulated by Nrg1III to promote

myelination. In an attempt to find the pathway or substrate that it is inhibited by Lm211, we

first reevaluated published work and performed experimental analysis that showed that Lm211

does not inhibit ERK or Akt (S2 Fig).

We next turned to PKA, which is required in parallel to Nrg1III to achieve full Egr2 activa-

tion and myelination [4–6]. PKA is a good candidate molecule because its hyperactivity causes

a phenotype similar to that observed in Nrg1IIItg/Lama2−/− mice: an arrest in radial sorting

with some promyelinating SCs undergoing premature myelination [41]. In addition, PKA

may be activated by Nrg1 [42,43] and by Gpr126, a g-coupled protein receptor that binds vari-

ous ligands, including Lm211[44,45]. We hypothesized that PKA, or one of its substrates, may

be normally inhibited by Lm211 and that the phenotype of Nrg1IIItg/Lama2−/− mice may be

due to excessive Nrg1III-driven promyelinating signals, plus disinhibited PKA signaling (Fig

6A).

To test this idea, we first evaluated the amount of substrates phosphorylated by PKA in sci-

atic nerves using an antibody that recognizes the PKA-phosphorylated consensus motif RxxS/

T (p-Sub antibody). This revealed a discrete number of bands, many of which were upregu-

lated in nerves deficient in Lm211 but not in those with Nrg1III overexpression (Fig 6A). We

also measured PKA activity directly in sciatic nerves at P5 and P16 and confirmed that PKA

was hyperactive in the absence of Lm211 at both timepoints (Fig 6B and S2 Fig). In contrast

PKA activity was normal in Nrg1IIItg at P16, higher at P5, and normal in Nrg1III+/− nerves,

suggesting that Nrg1III may not regulate PKA in SCs in vivo. PKA is regulated by levels of

cAMP or by lipids and peptides in a cAMP-independent fashion [46–49]. To determine if the

hyperactivity of PKA in Lm211 null SCs was caused by an increase in cAMP, we measured

cAMP concentration in sciatic nerves of mutant mice. Interestingly, the levels of cAMP at P16

and P5 were low in Lama2−/− nerves and normal in Nrg1IIItg (S2 Fig). Overall, these results

indicate that Lm211 inhibits PKA activation, possibly by a cAMP-independent mechanism.

Nrg1III overexpression in SCs results in excessive activation of the

ErbB2-Gab1 promyelinating pathway only when combined with Lm211

deficiency

We next investigated which steps of the Nrg1III signaling cascade were influenced by the

Lm211 and PKA axis. In vitro, PKA phosphorylates ErbB2 [50], thus, one PKA substrate that

accumulates in Lama2−/− nerves could be the Nrg1 receptor ErbB2/ErbB3 itself. Interestingly,

Lm211 inhibits neuregulin-induced myelination
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Fig 6. Increased protein kinase A (PKA), ErbB2, and Grb2-Associated Binder-1 (Gab1) activation in Nrg1IIItg//

Lama2−/− sciatic nerves. (A) Schematic representation of the hypothesis that laminin α2β1γ1 (Lm211) inhibits neuregulin 1

type III (Nrg1III) promyelin signaling by negatively regulating PKA. Western blot of PKA phospho-substrates in P16 sciatic

nerves. The image is representative of 3 experiments. (B) Measurement of PKA activity in sciatic nerves at P16 from the

indicated genotypes. PKA is more active in Lama2−/− and Nrg1IIItg//Lama2−/− nerves (n = 3 or more, **p < 0.01,
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sustained treatment of cultured SCs with a PKA-selective agonist increased phospho-ErbB2 in

a dose-dependent manner, in the absence of Nrg1 in the culture media (Fig 6C). In contrast, an

agonist of exchange protein directly activated by cAMP (EPAC) did not increase phospho-

ErbB2. Higher doses and longer treatment were required to activate ErbB2, similar to the con-

ditions required to promote SC differentiation and Egr2 expression [5,51,52], while short treat-

ments did not activate ErbB2, as previously reported [50]. The PKA-selective agonist also

induced phosphorylation of Grb2-Associated Binder-1 (Gab1), an adaptor protein that is phos-

phorylated upon Nrg1III/ErbB signaling in SCs and is required for myelination [53](Fig 6C).

These data suggest that PKA can directly transactivate the ErbB2-Gab1 axis independently of

Nrg1III. It is known that cAMP-PKA is also required to amplify Nrg1 signals in SCs [4–6]. To

confirm this, we exposed primary SCs to either Nrg1 alone or Nrg1 and dbcAMP and showed

that the phosphorylation of ErbB2 and Gab1 were enhanced if the SCs were exposed to both

Nrg1 and dbcAMP (Fig 6D). To confirm that Gab1 phosphorylation was downstream of

Nrg1-ErbB signaling, we pretreated SCs with the ErbB2 inhibitor PKI166 [54] and showed that

Gab1 phosphorylation was inhibited. In contrast, treatment with the Src-kinase inhibitor PP2

did not have any effect (Fig 6D). Thus, PKA can directly activate ErbB2, and cAMP sensitizes

the response of SCs to the Nrg1III-ErbB2-Gab1 pathway, at least in vitro. To ask if ErbB2 and

Gab1 were modulated by Lm211 in vivo, we next measured their phosphorylation status in

mutant sciatic nerves. Strikingly, phosphorylation of ErbB2 and Gab1 was not increased in

nerves of Nrg1IIItg, probably due to the presence of an intact Lm211 “brake;” however, deleting

Lm211 in the context of Nrg1III overexpression (Nrg1IIItg/Lama2−/−) significantly increased

ErbB2 and Gab1 phosphorylation (Fig 6E and 6F). A similar trend was observed at P5 (S4 Fig).

Overall, these data support the view that Lm211, via inhibition of PKA, reduces the output of

Nrg1 signaling in SCs in vivo.

PKA activation in Lm211-deficient SCs is associated with increased

expression of Oct6 and Egr2

We next tested if the Oct6 and Egr2 transcription factors, downstream of PKA and Nrg1, were

modulated in our system. By western blot (WB), the levels of both Oct6 and Egr2 were

increased in Lama2−/− and double mutant nerves at P16 (Fig 7A and 7B), but not in Nrg1IIItg

nerves, suggesting as before that Lm211 inhibition has to be released to drive excessive

Nrg1III-induced SC differentiation. A similar trend was observed for Egr2 in double mutants

earlier in development, corroborating that SCs may initiate premature differentiation (S4 Fig).

The number of Oct6 and Egr2 positive nuclei were also increased in Lm211-deficient nerves

(Fig 7C–7E), but the number of Egr2 positive nuclei was decreased in double mutants, likely

due to the arrested development with a reduced number of SCs reaching the promyelinating

stage (see Fig 4). Both cAMP and Nrg1 are required to induce sustained expression of Egr2 in

***p < 0.001 by 1-way ANOVA with Bonferroni multiple comparison test). (C) Treatment with a PKA-selective agonist

(6-Bnz-cAMP), but not exchange protein directly activated by cAMP (EPAC) agonist (8-pCPT-2-O-Me-cAMP) for 3 days

increases the levels of pErbB2 and pGab1 without Nrg1 treatment in primary SCs. The image is representative of 3

experiments. (D) Representative western blots showing the sensitization of the ErbB2-Gab1 pathway in response to Nrg1

following dbcAMP. Primary Schwann cells (SCs) in the presence (right 7 lanes) or absence (left 7 lanes) of dbcAMP for 3

days were exposed to Nrg1 (50 ng/ml) for the indicated time (h, hour). Where indicated, PKI166 (1 μM) or PP2 (1 μM) was

used to pretreat cells before Nrg1 stimulation. Phosphorylation of ErbB2 and Gab1 was significantly enhanced following

dbcAMP treatment and suppressed after PKI166 treatment. (E-F) Western blot analysis of ErbB2 (E) or Gab1 (F)

phosphorylation in sciatic nerves of the indicated genotypes at P16. ErbB2 and Gab1 phosphorylation are increased only in

Nrg1IIItg//Lama2−/− sciatic nerve. The experiments were repeated at least 3 times on 6 animals per genotype (E) or 3 times

on 2 to 6 different animals per genotype (F). *p < 0.05, ***p < 0.001 by 1-way ANOVA with Bonferroni multiple comparison

test. The numerical data used in B, E-F are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g006
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SCs in culture [5,6,55], and cAMP-PKA increases ErbB2 phosphorylation both in response to

Nrg1 [50] and independently of Nrg1 (Fig 6C). Therefore, we hypothesized that PKA could

also induce Oct6 and Egr2 expression independently of Nrg1. To test this, we asked if treat-

ment of SCs with a PKA agonist induced Oct6 and Egr2 protein levels. Indeed, exposure of

SCs to the specific PKA agonist induced both transcription factors (Fig 7F). This induction

was present in the absence of Nrg1, and was not seen with an EPAC-specific agonist. To test if

ErbB2 phosphorylation was required for the induction of Oct6 and Egr2, we treated rat SCs

with dbcAMP and analyzed Oct6/Egr2 expression after inhibition of ErbB2 with a specific

Fig 7. Oct6 and Egr2 expression are increased in Lama2−/− and Nrg1IIItg//Lama2−/− mutants. (A, B) Western blot from postnatal day 16 (P16) sciatic

nerves shows that the levels of Oct6 and Egr2 are increased in Lama2−/− and Nrg1IIItg//Lama2−/− nerves but not when neuregulin 1 type III (Nrg1III) is

overexpressed alone. The experiments were repeated at least 3 times on 5 (Oct6) or 4 (Egr2) different animals per genotype. *p < 0.05; **p = 0.006;

***p < 0.0001 by 1-way ANOVA with Bonferroni multiple comparison test. (C) Sciatic nerve longitudinal sections at P16 from the indicated genotypes

were stained for Oct6 or Egr2 (green) and DAPI (blue). (D, E) Quantification of the fraction of positive Oct6 and EGR2 nuclei. Three animals per genotype

were analyzed. *p < 0.05; **p < 0.005; ***p = 0.0007. A, B, D, E statistic by 1-way ANOVA with Bonferroni posthoc test for individual comparisons. (F)

Western blot analysis showing dose-dependent induction of Egr2 and Oct6 by protein kinase A (PKA)-selective agonists in primary Schwann cells (SCs) in

culture. (G) The inhibition of ErbB2 with PKI166 suppresses 30-50-cyclic adenosine monophosphate (cAMP)-induced Grb2-Associated Binder-1 (Gab1)

phosphorylation, but not the expression of Oct6/Egr2 in primary SCs. (n = 3, *, p < 0.05 by Student t test. (H) PKA inhibition with H89 suppresses cAMP-

induced expression of Oct6/Egr2 in primary SCs. (n = 3, *, p < 0.05, **, p < 0.01 by Student t test). Bar = 100 μm in C. The numerical data used in A-B,

D-E, G-H are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g007
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inhibitor, PKI166. ErbB2 inhibition caused the expected block in dbcAMP-induced Gab1

phosphorylation, but did not alter Oct6 or Egr2 levels (Fig 7G). In contrast, PKA inhibition

with H89 suppressed the induction of both transcription factors by dbcAMP (Fig 7H). These

results suggest that in cultured SCs, PKA may activate Oct6 and Egr2 independently of Nrg1.

Increased PKA activation amplifies promyelin signals downstream of

Nrg1III

We showed that in Nrg1IIItg//Lama2−/−nerves, ErbB2 and Gab1 are more active, and this is

associated with an increase in PKA activation due to Lm211-deficiency. To determine if the

effect of Lm211 loss is indeed mediated by PKA activation (Fig 8A), we inhibited PKA activ-

ity in vitro and in vivo using the selective PKA antagonists H89 and KT5720 and asked if this

was sufficient to decrease ErbB2 and Gab1 phosphorylation. In cultured SCs, H89, dose-

Fig 8. Laminin α2β1γ1 (Lm211) inhibits neuregulin 1 type III (Nrg1III)-induced ErbB2/3 and Grb2-Associated Binder-1 (Gab1)

activation by negatively regulating protein kinase A (PKA). (A) Schematic representation of the hypothesis that Lm211 inhibits

ErbB2/3 and Gab1 downstream of Nrg1III by negatively regulating PKA. (B) The PKA inhibitor H89 dose-dependently suppressed

dbcAMP-induced ErbB2 and Gab1 phosphorylation in rat Schwann cells (SCs). dbcAMP was used for 3 days (n = 3, *p < 0.05;

**p < 0.001 by Student t test). (C) Intermuscular injection of HB9 and KT5720 for 4 days reduced PKA activity, revealed by a decrease

in PKA phospho-substrates. (D, E) Similar treatment significantly reduced ErbB2 and Gab1 activation in Nrg1IIItg//Lama2−/− and, to a

lesser extent, in the other genotypes. The experiments were repeated at least 5 (D) or 3 (E) animals per genotype. *p < 0.05,

***p < 0.005, ***p < 0.001 by Student t test. The numerical data used in B, D-E, are included in S1 Data.

https://doi.org/10.1371/journal.pbio.2001408.g008
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dependently suppressed the activation of ErbB2 and Gab1 (Fig 8B). In vivo, we injected H89

and KT5720 beneath the gluteus superficialis and biceps femoris muscles, in which the sciatic

nerve resides, every day from P3 to P6 and sampled the nerves at P7. The contralateral side

was injected with DMSO and used as control. This procedure has been shown to effectively

deliver pharmacological treatment within sciatic nerves [56] and indeed we could observe a

reduction of PKA substrate phosphorylation in nerves treated with the inhibitors (Fig 8C).

Strikingly, the inhibitors significantly decreased ErbB2 and Gab1 activation in Nrg1IIItg//

Lama2−/− mice, indicating that PKA directly contributes to the promyelinating signals initi-

ated by Nrg1III in Schwann cells (Fig 8D and 8E). The expression of Oct6 and Egr2 instead

could not be consistently modulated by this short pharmacological treatment (S5 Fig). Taken

together, our results strongly suggest that Lm211, through inhibition of PKA, limits the acti-

vation of promyelinating signaling molecules such as ErbB2 and Gab1 in SCs.

Overall, based on our data, we conclude that Lm211 inhibits Nrg1III via PKA in several

instances: during radial sorting, to prevent premature SC differentiation; at the onset of myeli-

nation, to prevent myelination of fibers smaller than 1 μm; and during myelination, to limit

myelin thickness in small fibers (Fig 9).

Discussion

Our data clarify for the first time that Lm211 modulates and can even inhibit, rather than pro-

mote, myelination in vivo. SC development depends on a discrete number of extrinsic signals

originating from the axon and the ECM [58,59]. How SCs coordinate these different signals to

achieve myelination is poorly understood. Here, we focused on 2 of the major extrinsic signals:

the axonal molecule Nrg1III and the ECM component Lm211. Although these molecules have

been known for years to be important for SC development, it was not known how these signals

on 2 opposite surfaces of the SC collaborate to achieve myelination. We show that Lm211 has

an inhibitory role on several downstream effectors of the Nrg1 pathway. We show that this

effect is mediated by inhibition of PKA, that PKA is hyperactive in the absence of Lm211, and

that this leads to overactivation of ErbB2 and Gab1 when combined with Nrg1III overexpres-

sion, resulting in an arrest of radial sorting and in premature myelination. Taken together, our

results strongly indicate that Lm211 limits PKA activation and blocks this parallel pathway

that needs to converge with Nrg1III to initiate myelination. Our data begin to clarify how

Nrg1III can regulate such different SC responses: proliferation, survival, and myelination,

using the single receptor ErbB2/ErbB3. We propose that deposition of Lm211 in the basal lam-

ina modulates the SC response to axonal Nrg1III to favor proliferation, survival, and axonal

ensheathment during radial sorting while inhibiting myelination, effectively modulating the

Nrg1 response during development from a proliferative to a myelinating signal.

Based on our data, Lm211 limits the response of SC to Nrg1III at multiple steps of develop-

ment. In immature SCs, Lm211 promotes radial sorting and inhibits Nrg1-driven premature

myelination. In promyelinating SCs, Lm211 prevents Nrg1-driven inappropriate myelination

of axons smaller than 1 μm and limits myelin thickness on small axons (Fig 9). Thus, although

Lm211 function predominates during radial sorting and Nrg1 predominates during myelina-

tion, both are required to fine-tune the onset and extent of each developmental step. During

radial sorting, the levels of Nrg1III on axons are probably read by ErbB2/3 receptors as a

binary fate choice (myelination versus nonmyelination): above a threshold of Nrg1III SCs start

myelination, as increasing the expression of Nrg1III can switch the fate of nonmyelinated

axons to myelinated [27]. However, our data indicate that Lm211 increases the Nrg1III thresh-

old required for myelination. In contrast, expressing a dominant-negative form of integrin β1

in oligodendrocytes increases the threshold for myelination, but it is unclear if this is mediated
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by the Lm211 ligand and if this function is linked to a modulation of Nrg1III signaling also in

the central nervous system [60].

As summarized above, we provide evidence that Lm211 and Nrg1III have reciprocal roles

during radial sorting and myelination. This could suggest that there is a reciprocal inhibition

also from Nrg1III to Lm211, and that this inhibition may be required to terminate radial sort-

ing driven by laminin. Nrg1III could conceivably suppress the sorting behavior of SCs also via

PKA (dotted-arrow in S3B Fig). This could explain the drastic impairment in radial sorting

observed in Nrg1IIItg//Lama2−/− mice, and there is evidence in the literature indicating that

Nrg1 activates PKA [42,43]. However, our results in vivo were conflicting, with Nrg1III over-

expression increasing PKA activity at P5 but not at P16, and Nrg1III haploinsufficency not

reducing PKA activation. Thus, our data did not allow us to conclusively confirm this idea.

Our data indicate that myelin thickness is also modulated by Lm211, but interestingly, the

effect is opposite in small- and large-caliber fibers. This could be potentially be explained by

the fact that Lm211 uses different receptors (α6β1 and α6β4 integrin, dystroglycan, Gpr126)

Fig 9. Model depicting how laminin α2β1γ1 (Lm211) and neuregulin 1 type III (Nrg1III) signaling are integrated during SC development. In

immature SCs, Lm211, via one or more of its basal lamina receptors (Int = integrins, Dystroglycan = Dyst, Gpr126), inhibits protein kinase A (PKA) and

prevents Nrg1III from triggering myelination during radial sorting. In promyelinating cells, after radial sorting is finished and the 1:1 relationship with axons

larger than 1 μm has been achieved, PKA is activated by Gpr126 independently of Lm211 [45,57] and contributes to Nrg1III signaling and to the

expression of Oct6. In large myelinating fibers (above), Lm211 inhibition is overcome, PKA is fully active, and cooperates with Nrg1III to activate ErbB2,

Grb2-Associated Binder-1 (Gab1), and Egr2. In small myelinated fibers (bottom), Lm211 inhibition of PKA persists and prevents excessive Nrg1III-driven

myelination.

https://doi.org/10.1371/journal.pbio.2001408.g009
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that may exert positive and negative effects, which when removed together by virtue of remov-

ing the common Lm211 ligand, do not affect myelin thickness. It is also interesting to note

that the axonal sorting defects in Lm211 mutants are more severe in motor than sensory roots,

suggesting a higher dependence of motor fibers on Lm211. It follows that it will be interesting

to explore if the different effects of Lm211 on myelin thickness of large and small fibers may

coincide with a different effect of laminin–Nrg1III interactions on motor versus sensory nerve

fibers. Finally, the regulation of myelin thickness by Nrg1III is also more evident in small fibers

[28]. Up to now, the role of Lm211 in the control of myelin thickness was controversial, and

this can be explained by the fact that Lm211 has different effects in small and large fibers and

that the modulating role of Lm211 cannot be revealed when the Nrg1III axis is intact.

Why were laminins considered only as a promoter of myelination throughout the years?

Multiple experiments were interpreted to show that laminin is necessary for SC to myelinate

in vitro because formation of myelin was used as an endpoint [20,21,32], rather than consider-

ing radial sorting and myelination as 2 distinctive steps in development. Indeed, when radial

sorting was examined by EM in these studies, SCs were blocked at the immature and not at

the promyelinating stage. Similarly, in vivo, it was reported that ErbB2 phosphorylation was

decreased in the nerves of mice lacking all laminins in SCs [35]. SCs in these mutant mice are

arrested at the immature stage, and they are more undifferentiated than their wild-type coun-

terparts, likely explaining why ErbB2 phosphorylation appeared to be decreased. Finally, it was

previously reported that loss of Lm211 leads to a reduction in myelin thickness in the same

Lama2−/− animal model that we used [23]. This discrepancy can be explained by the fact that

myelin thickness, rather than g-ratio was measured, using an automated program and light

microscopy. In our hands, only the analysis of measurement of g-ratio using EM could reliably

and consisistently reveal the changes in g-ratio in small caliber fibres. Also, in previous studies,

myelin thickness was not evaluated as a function of axonal diameter, potentially confusing the

results, based on the differences that we have observed between small- and large-caliber fibers.

This, together with the fact that normal myelin thickness was also reported in other Lm211

mutants generated in the past [15,16,61], make us confident of our conclusion that Lm211

deletion alone is not sufficient to influence myelin thickness.

The molecular mechanisms through which Lm211 inhibits PKA and PKA promotes myeli-

nation are only partially understood. Lm211 binds Gpr126, a G protein-coupled receptor that

increases cAMP signaling and is required for peripheral myelination [44,45]. One of the down-

stream effectors of GPR126-cAMP is PKA, and together they are required to activate Egr2

expression and initiate myelination in a Nrg1III-dependent manner [4]. We originally postu-

lated that Lm211 decreases PKA activity by regulating Gpr126 and cAMP. Gpr126 binds

Lm211 to regulate the release of an inhibitory fragment with context-dependent effects on the

levels of cAMP[45]. However, cAMP levels were decreased in mutants lacking Lm211, suggest-

ing that the net effect of Lm211 on Gpr126 is stimulatory for cAMP production. Lm211 may

indirectly favor binding of Gpr126 to the activating ligands collagen IV [57] and cellular prion

protein on axons [62]. Collagen IV binding may depend on Lm211 because laminins favor

basal lamina polymerization [63,64], and prion binding may depend on Lm211 for proper

radial sorting and contact between SCs and axons [15]. On the other hand, our finding that

cAMP was low in Lm211-deficient nerves also suggests that the increased activation of PKA is

cAMP-independent. There are several examples of cAMP-independent PKA activation in

other cell types [46–49], and Lm211 receptors such as α6β4 integrins and dystroglycan could

potentially be involved [24,65]. The mechanism by which PKA regulates myelination has been

the subject of recent work, and it is only partially clarified. PKA in SCs regulates the cytoskele-

ton [66], signaling molecules, and transcription factors, such as members of the CREB family

and Egr2 [4,5]. How PKA induces Egr2 is unclear. One possibility is by activating NfkB and
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inducing Oct6. A cytoplasmic pool of PKA phosphorylates the p65 NfkB subunit on Serine

276 in SC [7], and, interestingly, this regulation may be cAMP-independent [67,68]. NF-kb is

required for axonal ensheathment and activation of Oct6 and binds the chromatin remodeler

Brg1, which is essential for myelination [69,70]. Oct6, in turn, activates Egr2 expression

[71,72]. Therefore, it is tempting to speculate that Gpr126, cAMP, PKA, NfkB, and Oct6 are all

part of a transient, linear pathway that switch-on Nrg1III-driven myelination, and that Lm211,

collagen IV, and prion proteins modulate it.

Our data have implications for human diseases. Loss-of-function mutations in LAMA2

causes Congenital Muscular Dystrophy 1A, which include demyelinating peripheral neuropa-

thies characterized by heterogeneous myelin thickness with focal hypermyelination, loss of

nerve fibers, short internodes, and wide nodes of Ranvier [26,73]. While the mechanisms of

the short internodes and wide nodes of Ranvier have been clarified [74–76], the molecular

basis of the focal hypermyelination in these patients was unclear. Our finding that Lm211

inhibits Nrg1III signaling in small fibers could explain the effect of Lm211 deficiency in a neu-

ropathic nerve, in which Nrg1 signals may be secondarily imbalanced. Similar alterations in

the balance between Nrg1III and Lm211 signaling during myelination could explain other

human neuropathies, such as Charcot-Marie-Tooth 4F and leprosy. The former is due to

recessive mutations in periaxin, an interactor of the dystrophin-complex linked to dystrogly-

can in SCs. Charcot-Marie-Tooth 4F is also linked to hypermyelination and demyelination,

possibly explained by the interrupted connection between dystroglycan and its ligand, Lm211,

in the SC basal lamina. Similarly, the leprosy mycobacterium infects peripheral nerves by bind-

ing Lm211 in SCs and activates ErbB2 [77,78]. The resulting dedifferentiation and demyelin-

ation could be explained by concomitant hyperactivation of ErbB2 and inhibition of Lm211,

which, as we have shown here, is deleterious for myelin-forming SCs.

Materials and methods

Transgenic mice

All experiments involving animals followed experimental protocols approved by the San Raf-

faele Scientific Institute Animal Care and Use Committee and Roswell Park Institute Animal

Care and Use Committee. The approved protocols at San Raffaele (n. 363) and at the Univer-

sity of Buffalo/Roswell Park (UB1188M, UB1194M, UB1196R) adhered to the guidelines set

forth by the “Guide For The Use of Laboratory Animals,” National Research Council, National

Academy Press, Washington D.C., 1996. Nrg1III+/− mice were characterized in [27] and were a

gift from Drs. Talmage and Role at SUNY Stony Brook; Nrg1IIItg mice were characterized in

[36]; Lama2−/− mice were characterized in [23] and were a gift from Dr. Takeda, National Cen-

ter of Neurology and Psychiatry, Tokyo. All animals used in this work were congenic into the

C57/BL6N background. Genotyping of mutant mice was performed by PCR on tail genomic

DNA, as described in [27,36]. For Lama2−/−, we used the following primers: 50-CCCGTGATA

TTGCTGAAG-30; 50-CCTCTCCATTTTCTAAAG-30; 50-CAGGTGTTCCAGATTGCC-30.

PCR was carried out at 95˚C for 45 s, 50˚C for 45 s, followed by extension at 72˚C for 60 s, for

30 cycles. The expected 246 nt product for the wild-type allele and 450 nt product for the

mutant allele were separated on a 2% agarose gel.

Morphological analysis

Mutant and control littermates were sacrificed at P5 and P16, and sciatic nerves were dis-

sected. Semithin sections and EM analyses of sciatic nerves were performed as previously

described [79]. The quantification of the number and the diameter of the axons in the unsorted

bundles, the determination of g-ratios (axon diameter/fiber diameter) and the quantification

Lm211 inhibits neuregulin-induced myelination

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001408 June 21, 2017 17 / 26

https://doi.org/10.1371/journal.pbio.2001408


of Remak bundles were performed on ultrathin sections. At least 3 animals per genotype were

analyzed. Unsorted bundles were defined as groups of “naked” axons with no SC cytoplasm

among them, and they contained some axons larger than 1 μM. All of the unsorted bundles in

a section were counted. In contrast, Remak bundles differed from unsorted bundles because

they contained ensheathed axons, all smaller than 1 μM. G-ratio were determined for at least

150 fibers chosen randomly. EM analyses on SC–DRG neurons cocultures from WT and CRD

KO embryos following Lm211 treatment were performed as described [80].

Cell cultures

Dorsal root ganglia (DRG) neurons were generated as described in [27]. Rat SCs (200,000

cells/coverslip) were added to established cocultures, and myelination was initiated by supple-

menting the media (Fetal Calf Serum [FCS] 10%, L-glutamine 2 mM, D-glucose 4 g/l, Nerve

Growth Factor [NGF; Harlan, Bioproducts for Science] 50 ng/ml in MEM medium [Invitro-

gen]) with 50 μg/ml of recombinant Lm211 purified as described in [81,82] or obtained from

(Biolamina) and dyalized. Primary SCs were isolated from the sciatic nerves of 4-day-old

Sprague-Dawley pups according to [83]. To expand the SC population, cells were kept in grow-

ing medium: DMEM containing 1% FBS, Nrg1 30 ng/ml (human NRG1-β1 extracellular

domain, R&D Minneapolis, MN), and forskolin 5 μM (Calbiochem, Gibbstown, NJ) for 2 to 4

generations. More than 95% of SC purity was verified based on their morphology and S100

immunoreactivity [54]. For experiments, cells were subcultured into 12 well dishes in growing

medium, and after the cell density reached 70% confluency, they were kept for 3 days in differ-

entiation medium: DMEM containing 1% FBS and dbcAMP (Dibutyryladenosine 30,50-cyclic

monophosphate sodium salt, Bremen, Germany) without NRG1. PKA inhibitor H89 (Novar-

tis, Basel, Switzerland) and ErbB2 inhibitor PKI166 (Novartis, Basel, Switzerland) were added

after 24h of dbcAMP treatment and then left for 2 days in combination with dbcAMP (Figs 6

and 8). For the sensitization experiment (Fig 6), cells were first treated with cAMP for 3 days,

then Nrg was added for the indicated time in the presence of cAMP. When indicated, PKI166

and PP2 (Calbiochem, Gibbstown, NJ), were added 30 min before Nrg1 treatment. 6-Bnz-

cAMP and 8-pCPT-2-O-Me-cAMP were obtained from Biolog (Bremen, Germany). All other

undesignated reagents were purchased from Sigma.

Antibodies

All antibodies used were previously validated for the applications used. Antibodies against

ErbB2 (sc-7301), pErbB2Y1248 (sc-12352-R) for western blot (WB) were from Santa Cruz Bio-

technology. Anti-ErbB2 (4290, 1:1000 for WB), Gab1 (3232, 1:1000 for WB), p-GabY627 (3231,

1:1000 for WB), and Phospho-PKA Substrate (RRXS�/T�) (9621, 1:1000 for WB) were from

Cell Signaling. Anti-Oct6 were either from Santa Cruz (sc-11661) or from (D. Meijer, Univer-

sity of Edinburgh, United Kingdom, 1:1000 for IHC and WB). Anti-Egr2 was either from Cov-

ance (PRB-236P) or from D. Meijer, University of Edinburgh, UK, 1:1000 for IHC and WB).

p-Histone H3 (06–570, 1:200 for IHC) was from EMD Millipore. Anti-neurofilament M was

from Covance (PKC-593P, 1:1000 for IHC) and Anti-MBP from V. Lee, University of Pennsyl-

vania, USA (1:6 for IHC). Anti-calnexin (C4731, 1:4000 for WB), tubulin (T4026, 1:2000 for

WB), GAPDH (G9545, 1:5000 for WB) and β-actin (A5441, 1:1000 for WB) were from Sigma-

Aldrich. Secondary antibodies: goat antichicken DyLight 550, (Abcam, ab96948, 1:700 for

IHC), goat antirabbit Alexa Fluor 488 (111-545-003, 1:700 for IHC) and goat antirabbit

HRP (111-035-003, 1:5.000 for WB) goat antimouse HRP from Jackson ImmunoResearch;

(SIGMA, A2554, 1:10000 for WB). Infrared secondary antibodies for quantitative WB analyses

were obtained from LI-COR Biosciences and used 1:10,000 (goat antimouse IRDye 680 926–
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68070; goat antimouse IRDye 800 926–68070; goat antirabbit IRDye 680 926–68021; goat anti-

rabbit IRDye 800 926–32211).

Western Blot

Frozen sciatic nerves dissected from P5 and P16 mice were pulverized and resuspended in

lysis buffer (95 mM NaCl, 25 mM Tris-HCl, pH 7.4, 10 mM EDTA, 10mM EGTA, 2% SDS, 1

mM Na3VO4, 1 mM NaF, 1% Protease Inhibitor Cocktail [Sigma-Aldrich]), 1% Phosphatase

inhibitor cocktail C2 and C3 (Sigma-Aldrich), boiled for 5 min, and centrifuged 10 min at

17,000 g at 16˚C. The protein concentration in supernatants was determined by BCA protein

assay (Thermo Scientific) according to the manufacturer’s instructions. Equal amounts of

homogenates were loaded with reducing sample buffer. SC were lysed and boiled in 2X SDS

dye lysis buffer (1 M Tris-HCl pH 6.8, 10% Sodium Dodecyl Sulfate, Glycerol, 1% Dichloro-

Diphenyl-Tichloroethane, 1% Bromophonol blue) and centrifuged at 17,000 g at 4˚C, the

supernatants were denatured, resolved on SDS-polyacrylamide gel and electroblotted onto

PVDF or nitrocellulose membrane (Millipore). Blots were then blocked with BSA 5% in PBS

or Odyssey buffer (LI-COR Biosciences) and incubated with the appropriate antibody. Blots

were developed with ECL or ECL prime (GE healthcare), and band intensity was quantified

from films using ImageJ software. Alternatively, for quantitative WB analyses, filters were ana-

lyzed using the Odyssey Infrared Imaging System (LI-COR Biosciences) according to manu-

facturer’s instructions.

Immunohistochemistry

DRG cocultures were fixed with 4% PFA for 20 min, washed, permeabilized with cold metha-

nol for 20 min, incubated in blocking solution (20% FCS, 2% bovine serum albumin, and 0.1%

Triton in PBS) for at least 1 h, and then incubated overnight with antineurofilament, MBP, or

PH3 antibodies in blocking solution. Explants were then incubated with secondary antibodies

and counterstained with Dapi. 6 (for MBP) or 5 (for PH3) images from each DRG were

acquired by epifluorescence on a Leica DM5500B or DM6000 microscope with a 10X or 20X

objective. This analysis was performed on at least 3 coverslips per embryo and on 2 (for PH3)

or 3 (for MBP) embryos per genotype for at least of 6 (for PH3) or 9 (for MBP) coverslips per

condition. Sciatic nerves were dissected from P5 or P16 mice and fixed 1 h in 4% PFA at 4˚C,

cryo-protected in 20% sucrose (Sigma-Aldrich), embedded in OCT (Miles), and snap-frozen

in liquid nitrogen. Alternatively, unfixed nerves were directly embedded in OCT and snap fro-

zen. Staining was performed on 10-μm longitudinal sections on unfixed tissue for Egr2 and

fixed tissue for Oct6. Sections were permeabilized in cold methanol for 5 min and blocked

with 20% FBS, 2% BSA, and 0.1% triton and incubated overnight with the primary antibody.

Images from 3 different sections per animal were acquired with a 20X objective. 3 different

mice per for each genotype were analyzed.

TUNEL and proliferation assay

These assays were performed as described [84].

PKA Assay

PKA activity was assessed in vivo using the SigaTect cAMP-dependent PKA assay system (Pro-

mega, V4780). Sciatic nerves at P5 and P16 were sampled and immediately used for the assay

according to the manufacturer instructions.
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cAMP Assay

To measure cAMP concentration in P5 and P16 sciatic nerves, a cAMP assay kit (Enzo Life

Sciences) was used as described [85].

In vivo injections

Treatments with the PKA signaling inhibitors H-89 (EMD Millipore) and KT5720 from (Enzo

Life Sciences) were performed through injections beneath the gluteus superficialis and biceps

femoris muscles. Animals were injected on 4 consecutive days from P3 to P6 with 10 μl of

inhibitor solution (10 μM H-89 DMSO, 1 μM KT5720, 0.1% DMSO diluted PBS) per day.

Untreated nerves were injected with 10 μl of 0.1% DMSO diluted in PBS. Sciatic nerves were

sampled at P7.

Statistical analyses

Data were collected randomly and assessed blindly. The data distribution was assumed to be

normal, although we did not formally test it. All statistical analyses were performed on at least 3

independent experiments. Statistical detailed analyses are reported in each figure legend and all

assays (1-way ANOVA multiple comparison test, 2-sided moderate t test and 2-tailed unpaired

t test) were performed using the Prism Software package (GraphPad, San Diego, CA).

The numerical data used in all figures are included in S1 Data.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figure panels 1M, 1N, 2C, 2D, 3B–3E, 4C, 5B–5E, 6B, 6E, 6F, 7A, 7B, 7D, 7E, 7G, 7H,

8B, 8D, 8E, S1C, S1D, S2A–S2D, S4A–S4D and S5A and S5B.

(XLSX)

S1 Fig. Defects in SC proliferation and death are not major causes of radial sorting defects

in Nrg1IIItg//Lama2−/− mice. (A, B) Morphology of developing sciatic nerves from the indi-

cated genotypes at P5. (A) Transverse semithin sections show that in P5 wild-type nerves,

radial sorting is ongoing. Nrg1IIItg//Lama2−/− mice present more bundles of naked axons

(arrowheads) and fewer myelinated axons than Lama2−/− mice. (B) Electron micrograph anal-

ysis shows that in Lama2−/− and Nrg1IIItg//Lama2−/− mutants, large caliber axons (a) are

naked and grouped in bundles. One axon is undergoing axonal degeneration (arrow). (C, D)

Longitudinal sciatic nerve sections of control and mutant mice at P5 (C) or P16 (D) were

stained with P-H3 (green) or TUNEL (red) and counterstained with DAPI (blue). There are

no statistically significant differences among the genotypes in the percentage of P-H3 nuclei

positive or TUNEL-positive nuclei. n = 3 mice per genotype. Data are represented as mean

value ± sem �p� 0.05. Bar = 10 μm in A, 2 μm in B, 100 μm in C, D. The numerical data used

in C and D are included in S1 Data.

(TIF)

S2 Fig. AKT, Erk, cAMP and PKA activity in Lm211 and Nrg1II mutant nerves. (A) West-

ern blot from P16 sciatic nerves shows that the activation of the Erk and Akt pathways is not

significantly different among the mutants. The graphs on the right show quantification for

n = 3 (Akt) and n = 2 (Erk) nerves. Error bars indicate SEM. (B) PKA activity in sciatic nerves

from the mice of the indicated genotypes at P5. PKA is more active in Lama2−/− and Nrg1IIItg

sciatic nerves. (C, D) Measurement of cAMP from sciatic nerves at P5 and P16 from the
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indicated genotypes. cAMP is lower in Lama2−/− sciatic nerves at P16. The numerical data

used in A-D are included in S1 Data.

(TIF)

S3 Fig. Summary of radial sorting and myelin phenotypes in the mutants. (A) Summary of

radial sorting and myelin phenotypes observed in single and double mutants. (B) Schematic of

Lm211 inhibiting pro-myelinating pathways downstream of Nrg1III by negatively regulating

PKA (solid arrows). The dotted arrow shows the putative activation of PKA by Nrg1III, as

indicated in the literature [42,43], which would result in inhibition of radial sorting by Nrg1III.

In this view, the inhibition between Lm211 and Nrg1III would be reciprocal.

(TIF)

S4 Fig. Egr2, Gab1, Oct6, and Egr2 at P5 in sciatic nerves from Lama2−/− and Nrg1IIItg//
Lama2−/− mutants. Western blot from P5 sciatic nerves for p-ErbB2 (A) p-Gab1 (B), Oct6 (C)

and Egr2 (D) show a trend for increase in p-ErbB2, p-Gab1, and Egr2 in Lama2−/− and

Nrg1IIItg//Lama2−/− double mutant nerves, less evident when Nrg1III is overexpressed alone.

The experiments were repeated 2 times from 2 different animals per genotype. Error bars indi-

cate SEM. The numerical data used in A-D are included in S1 Data.

(TIF)

S5 Fig. Short pharmacological treatment with PKA inhibitors in vivo does not reduce the

expression of Oct6 or Egr2. (A, B) Intermuscular injection of HB9 and KT5720 for 4 days did

not significantly reduce Oct6 (A) or Egr2 (B) expression in P7 sciatic nerves. The experiments

were repeated at least 3 times on 3 animals per genotype. The numerical data used in A-B are

included in S1 Data.

(TIF)
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