Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

Michael J. Daly1*, Elena K. Gaidamakova1, Vera Y. Matrosova1, Alexander Vasilenko1, Min Zhai1, Richard D. Leapman2, Barry Lai3, Bruce Ravel3, Shu-Mei W. Li4, Kenneth M. Kemner3, James K. Fredrickson4

1 Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America, 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America, 3 Biosciences Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America, 4 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America

In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vivo and in vitro irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

Introduction

The amount of DNA damage caused by a given dose of γ-radiation for resistant and sensitive bacteria is very similar [1,2]. Yet, the range of ionizing radiation (IR) resistances is large [1–3], with a factor of 200 separating the most-resistant from the most-sensitive species [1]. For example, Deinococcus radiodurans can survive levels of IR (10 kGy) that induce approximately 100 DNA double-strand breaks (DSBs) per genome, whereas Shewanella oneidensis is killed by levels of IR (0.07 kGy) that result in less than 1 DSB per genome [1]. We have reported a relationship between intracellular Mn/Fe concentration ratios and bacterial survival following exposure to IR, in which the most-resistant cells contained about 300 times more Mn and about three times less Fe than the most-sensitive cells [1]. Furthermore, restricting Mn(II) during growth of D. radiodurans significantly lowered the Mn content of wild-type cells, and IR resistance to levels quantitatively similar to several highly sensitive D. radiodurans DNA repair mutants [1]. However, the nature of Mn-facilitated IR resistance was undefined, and the question of why many bacteria that encode a complement of repair functions are killed by doses of IR that cause little DNA damage has not been resolved [1,4,5].

Broad-based bioinformatic and experimental studies have converged on the conclusion that D. radiodurans uses a relatively conventional set of DNA repair and protection functions, but with far greater efficiency than IR-sensitive bacteria [1–12]. Despite these efforts, however, the molecular mechanisms underlying the extraordinary IR resistance of D. radiodurans and other Mn-accumulating bacteria remain poorly understood [3,4]. For example, recent work by Zahradka et al (2006) [7] showed that DNA polymerase I (PolA) of D. radiodurans supports very efficient DNA replication at the earliest stages of recovery, and could account for the high fidelity of RecA-dependent DSB fragment assembly [7]. However, IR-sensitive D. radiodurans polA mutants are fully complemented by expression of the polA gene from the IR-sensitive Escherichia coli [12].

The reason why repair proteins, either native or cloned, in D. radiodurans cells function so much better after irradiation than in other organisms is unknown. We show that the amount of protein damage caused by a given dose of γ-radiation for intrinsically resistant and sensitive bacteria is very different. High levels of protein protection during irradiation correlated with high intracellular Mn/Fe concentration ratios and high levels of resistance, whereas proteins in radiation-sensitive cells were highly susceptible to IR-induced oxidation.

Academic Editor: Gregory A. Petsko, Brandeis University, United States of America

Received October 30, 2006; Accepted February 2, 2007; Published March 20, 2007

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose

Abbreviations: D10, 10% survival value; dH2O, double-distilled and de-ionized water; DSB, double-strand break; HO•, hydroxyl radical; H2O2, hydrogen peroxide radical; IR, ionizing radiation; LM, light microscopy; O2•-, superoxide ions; OD600, optical density at 600 nm; PolA, DNA polymerase I; ppm, parts per million; ROS, reactive oxygen species; TEM, transmission electron microscopy; XANES, X-ray-absorption near-edge structure; XRF, X-ray fluorescence

* To whom correspondence should be addressed. E-mail: mdaly@usuhs.mil
Author Summary

One original goal of radiobiology was to explain why cells are so sensitive to ionizing radiation (IR). Early studies in bacteria incriminated DNA as the principal radiosensitive target, an assertion that remains central to modern radiation toxicity models. More recently, the emphasis has shifted to understanding why bacteria such as _Deinococcus radiodurans_ are extremely resistant to IR, by focusing on DNA repair systems expressed during recovery from high doses of IR. Unfortunately, as key features of DNA-centric focusing on DNA repair systems expressed during recovery from IR are dependent on protein protection. In contrast to resistant bacteria, naturally sensitive bacteria are highly susceptible to IR-induced protein oxidation. We propose that sensitive bacteria sustain lethal levels of protein damage at radiation doses that elicit relatively little DNA damage, and that extreme resistance in bacteria is dependent on protein protection.

Results

Mn(II) Ions Protect Protein, but Not DNA, during In Vitro Irradiation

In comparison to Fe(II), Mn(II) does not significantly react with dioxygen (O₂) or hydrogen peroxide (H₂O₂) at physiological pH values in water. However, Mn(II) has been reported to react strongly with superoxide radicals (O₂⁻·). For example, as free ions or when complexed with lactate or succinate, Mn(II) can act as a potent scavenger of O₂⁻·, as with Mn cycling between the divalent and trivalent states, releasing H₂O₂ as an intermediate [13]. In contrast, when complexed with bicarbonate, Mn(II) catalyzes the disproportionation of H₂O₂ [14]. Thus, the presence of Mn might affect the relative abundance of reactive oxygen species (ROS) generated during irradiation. During the γ-irradiation of water, solvated electrons (e⁻aq) react rapidly with O₂ to form O₂⁻· [15], which could react with Mn(II) and protons (H⁺) to form H₂O₂ and Mn(III) [13]. Mn redox cycling would occur if Mn(III) generated during irradiation was reduced back to Mn(II) by an electron donor such as H₂O₂, a major and relatively stable product of the radiolysis of water (Figure 1).

The primary oxygen radicals generated in the radiolysis of water are hydroxyl radicals (HO*) and peroxy radicals (RO₂*) [15]. On the basis of the different reactivities of HO* and O₂⁻· with DNA and proteins, we tested the ability of Mn(II) to scavenge these ROS during irradiation. DNA is readily damaged by HO*, but insensitive to O₂⁻· [16]. In contrast, O₂⁻· damages [Fe-4S] cluster-containing enzymes such as aconitase [16], and Mn(II) has been reported to protect enzymes from Fe-catalyzed inactivation by O₂ in the presence of electron donor systems [17,18]. For example, the restriction enzyme BamHI is readily deactivated by ROS generated under aerobic conditions in the presence of Fe(II) and ascorbate, but not when O₂ is absent or 4 mM Mn(II) is present [19].

Consistent with the propensity of HO*, but not O₂⁻·, to damage DNA dissolved in double-distilled de-ionized water (dH₂O) [15,16], 1% dimethylsulphoxide (DMSO, a HO* scavenger) [15] conferred substantial protection on supercoiled plasmid DNA in vitro during aerobic irradiation, but 5 mM Mn(II) did not (Figure 2A). We also tested BamHI for its susceptibility to IR damage in vitro (Figure 2B and 2C). The highest IR dose that BamHI could survive and then function after irradiation under aerobic conditions in dH₂O was approximately 50 Gy; in 1% DMSO, it was approximately 150 Gy; and in 5 mM MnCl₂, it was approximately 1,000 Gy. Since the deactivating IR dose for BamHI that has been irradiated anaerobically in dH₂O was approximately 50 Gy; and in 5 mM DMSO, it was approximately 150 Gy; and in 5 mM MnCl₂, it was approximately 1,000 Gy. Since not all oxidative modifications lead to carbonyl generation into proteins at Lys, Arg, Pro, and Thr residues by oxidative reactions [20] (Figure 2C), the level of carbonyl groups in proteins is widely used as a marker of oxidative protein damage and has attracted a great deal of attention due to its irreversible and unrepairable nature [21]. Since not all oxidative modifications lead to carbonyl derivatives, however, the levels of oxidation detected represent minimal values. These results support our model that Mn(II) ions might protect proteins by scavenging peroxy radicals (O₂⁻·, HO₂⁻·, and R-RO₂⁻·) and/or H₂O₂, but do not scavenge HO* generated during irradiation (Figure 1).

Bacterial Radioresistance Is Quantifiably Related to Protein Oxidation

To demonstrate a mechanistic link between solution-phase radiochemistry of Mn ions (Figure 2) and their physiological targets in vivo, we examined IR-induced protein damage in...
IR-sensitive and IR-resistant bacteria (Figure 3). Cellular proteins in the most-sensitive bacteria were substantially more vulnerable to IR-induced oxidation than proteins in the most-resistant bacteria (Figure 3); and from the pattern of oxidized bands, we infer that not all proteins in sensitive bacteria are equally susceptible to carbonylation. At 4 kGy, high levels of protein oxidation occurred in cells with the lowest intracellular Mn/Fe concentration ratios, whereas no protein oxidation was detected in cells with the highest Mn/Fe ratios (see bottom of Figure 3 for bacterial IR survival values and Mn/Fe concentration ratios). In vitro, proteins from resistant bacteria were readily carbonylated when exposed to IR in the presence of Fe (Figure 4A), which confirmed that proteins in resistant bacteria are not inherently resistant to oxidation. Furthermore, we previously reported that *D. radiodurans* cells grown in defined rich medium without Mn supplementation (No-Mn DRM) were depleted in Mn and, at 10 kGy, displayed a 1,000-fold reduction in survival compared to cells with normal Mn concentrations [1]. *D. radiodurans* cells grown in DRM without Mn were highly susceptible to protein oxidation during irradiation (Figure 4B). In comparison, *D. radiodurans* cells with normal intracellular Mn concentrations were sensitized to IR and protein oxidation when irradiated at pH 10.5 (Figure 4C). *Pseudomonas putida* cells irradiated anaerobically were equally sensitive to IR and as susceptible to IR-induced protein carbonylation as cells irradiated aerobically (Figure 4D). Thus, high levels of IR-induced protein oxidation in bacteria correlated with IR sensitivity in the presence or absence of atmospheric O$_2$, and the IR resistance and level of protein oxidation in *D. radiodurans* cells with normal intracellular Mn concentrations could be controlled exogenously.

Figure 2. Mn(II) Protects Proteins, but Not DNA, during In Vitro Irradiation

(A) DMSO-mediated DNA protection. pUC19 plasmid DNA was irradiated aerobically to the indicated doses in dH$_2$O, 1% DMSO (HO* scavenger), or 5 mM MnCl$_2$, followed by agarose gel electrophoresis (AGE). MnCl$_2$ and DMSO were prepared in dH$_2$O. IR, 60Co, aerobic at 0 °C. L, linear (2,686 base pairs); Lp, pUC19 + BamHI; M, size markers; OC, open circular; SC, supercoiled.

(B) Mn(II)-mediated protein protection. BamHI enzyme was irradiated aerobically to the indicated doses in dH$_2$O, 1% DMSO, or 5 mM MnCl$_2$, and then incubated with λ-phage DNA for 1 h at 37 °C, followed by AGE. Inset (white border), top gel (dH$_2$O): BamHI irradiated anaerobically. M, size markers; U, uncut λ-DNA.

(C) Western blot immunoassay of protein-bound carbonyl groups in BamHI irradiated aerobically to the indicated doses in the presence or absence of 5 mM MnCl$_2$ and/or 200 μM FeCl$_2$. Approximately 220-ng BamHI were loaded per lane in the Western blot (W) and in the Coomassie-stained polyacrylamide denaturing gel (C); M, mixture of artificial IgG-binding protein standards; S, wide-range protein standards. doi:10.1371/journal.pbio.0050092.g002

IR-sensitive and IR-resistant bacteria (Figure 3). Cellular proteins in the most-sensitive bacteria were substantially more vulnerable to IR-induced oxidation than proteins in the most-resistant bacteria (Figure 3); and from the pattern of oxidized bands, we infer that not all proteins in sensitive bacteria are equally susceptible to carbonylation. At 4 kGy, high levels of protein oxidation occurred in cells with the lowest intracellular Mn/Fe concentration ratios, whereas no protein oxidation was detected in cells with the highest Mn/Fe ratios (see bottom of Figure 3 for bacterial IR survival values and Mn/Fe concentration ratios). In vitro, proteins from resistant bacteria were readily carbonylated when exposed to IR in the presence of Fe (Figure 4A), which confirmed that proteins in resistant bacteria are not inherently resistant to oxidation. Furthermore, we previously reported that *D. radiodurans* cells grown in defined rich medium without Mn supplementation (No-Mn DRM) were depleted in Mn and, at 10 kGy, displayed a 1,000-fold reduction in survival compared to cells with normal Mn concentrations [1]. *D. radiodurans* cells grown in DRM without Mn were highly susceptible to protein oxidation during irradiation (Figure 4B). In comparison, *D. radiodurans* cells with normal intracellular Mn concentrations were sensitized to IR and protein oxidation when irradiated at pH 10.5 (Figure 4C). *Pseudomonas putida* cells irradiated anaerobically were equally sensitive to IR and as susceptible to IR-induced protein carbonylation as cells irradiated aerobically (Figure 4D). Thus, high levels of IR-induced protein oxidation in bacteria correlated with IR sensitivity in the presence or absence of atmospheric O$_2$, and the IR resistance and level of protein oxidation in *D. radiodurans* cells with normal intracellular Mn concentrations could be controlled exogenously.

Generation of O$_2$ and H$_2$O$_2$ in Anaerobic MnCl$_2$ Solutions during Irradiation

In vitro, the stoichiometry of intermediates and end products of Mn redox cycling is dependent on the concentration of reactants [13]. For example, Mn(III) accumulates if H$_2$O$_2$ becomes limiting, whereas an excess of O$_2$ and H$^+$ favors the formation of H$_2$O$_2$ [13] (Figure 1). Using assays based on Rhodazine D, a sensitive colorimetric reagent for measuring O$_2$ and H$_2$O$_2$, we tested whether or not MnCl$_2$ solutions exposed anaerobically to 10 kGy generated these species (Figures 5A and S1). Dissolved O$_2$ and H$_2$O$_2$ react with the pale yellow leuco form of Rhodazine D to produce a rose color, with the color proportional to the dissolved O$_2$ or H$_2$O$_2$ concentration. Color development in an Ar-purged solution tested after irradiation (Figure 5A, column III), but not upon re-purging with Ar (Figure 5A, column V), indicated O$_2$ formation. Color development in an Ar-purged solution tested after irradiation and upon re-purging with Ar (Figure 5A, column V), but not following catalase treatment (Figure 5A, column VI), indicated H$_2$O$_2$ accumulation. Consistent with the existence of a threshold concentration of Mn(II) under in vitro irradiation were (1) exposure of anaerobic dH$_2$O or MnCl$_2$ solutions at
concentrations below 0.1 mM to 10 kGy did not generate detectable levels of O2 or H2O2 (Figure 5A and 5B); (2) exposure of anaerobic MnCl2 solutions at intermediate concentrations (0.1–10 mM) to 10 kGy generated H2O2 (Figure 5A); and (3) from initially anaerobic conditions, exposure of MnCl2 solutions at high concentrations (1 M) to 10 kGy yielded O2, but not H2O2 (Figure 5A), and copious Mn dioxide precipitates (Figure S2); we infer that the accumulation of Mn dioxides was caused by a shortage of H2O2 [13], which is decomposed by c-radiolysis [15].

Mn-Accumulating Cells Release H2O2 during Irradiation

The obligate aerobic D. radiodurans accumulates 2 mM or greater Mn (1 × 10^5 Mn atoms/cell, assuming an average cell volume of 6.5 × 10^-2 μm^3) [1], and the facultative anaerobic, radioresistant bacterium Lactobacillus plantarum [1,22] accumulates 20–25 mM Mn(II) [23]. For an irradiated cell containing 2–25 mM Mn engaged in catalytic Mn redox cycling [13], intracellular O2, which does not easily cross biological membranes [16,24], might be reduced to H2O2, whereas H2O2 was consumed by the cells upon incubation at 32 °C (Figure 5A). We infer that H2O2 was produced by intracellular Mn(II,III) redox cycling. In contrast, detectable levels of H2O2 or O2 were not released by non-irradiated D. radiodurans or L. plantarum control samples, nor by irradiated S. oneidensis (Figure 5A), which accumulates substantially more Fe than Mn and is extremely sensitive to IR [1,5].

Increasing pH Inhibits Mn Redox Cycling

Reducing the equilibrium concentration of H+ with hydroxide ions (OH-) is predicted to limit Mn redox cycling [13] and the accumulation of H2O2 (Figure 1). In testing the possibility that survival of irradiated D. radiodurans is vulnerable to conditions that limit intracellular acidification, we first established that IR-driven Mn redox cycling could be inhibited in vitro by increasing the pH. In vitro, exposure to IR of anaerobic 10 mM MnCl2 at pH 9 or higher yielded O2 but not H2O2, whereas H2O2 was formed at pH values below 9 (Figure 5B). Consistent with the prediction that Mn redox cycling can be inhibited in vivo by OH-, D. radiodurans irradiated at pH 10.5 did not release H2O2 or O2 (Figure 5A). In vivo, the 10% survival value (D10) [1] of D. radiodurans cells grown, irradiated, and recovered at pH 7 was 16 kGy, whereas the D10 was 6 kGy for cells grown at pH 10.5, and recovered at pH 7 (Figure 6B, top); survival of non-

Figure 3. In Vivo IR-Induced Oxidative Protein Damage

Samples were treated (+) or not treated (−) with DNPH. For the Western blot (W) and for the Coomassie-stained polyacrylamide denaturing gel (C), 20-μg protein samples were loaded per lane. DR/Fe/0.4 kGy indicates that the D. radiodurans (non-irradiated) cell extract was adjusted to 500 μM FeCl2 and exposed to 0.4 kGy in vitro. Values for intracellular Mn/Fe concentration ratios and D10 at the bottom of the figure, as reported previously [1]. M, mixture of artificial IgG-binding protein standards; O, oxidized protein standards; S, wide-range protein standards; SO, S. oneidensis.

doi:10.1371/journal.pbio.0050092.g003
irradiated *D. radiodurans* control samples held at a pH of 11 or lower for 16 h was approximately 100% (Figure 6B, bottom). In vivo, the pH-dependent loss in IR resistance of *D. radiodurans* (Figure 6B, top) correlated with a substantial increase in oxidative protein damage during irradiation. *D. radiodurans* was grown in defined rich medium without Mn supplementation (no-Mn DRM) [1] to OD₆₀₀ 0.8 and exposed aerobically to 10 kGy. A total of 20 μg of protein extract loaded per lane.

(8) Mn-depleted, radiosensitive *D. radiodurans* cells [1] are highly susceptible to oxidative protein damage during irradiation. *D. radiodurans* was grown in OD₆₀₀ 0.8 and exposed aerobically to 10 kGy. A total of 20 μg of protein extract loaded per lane.

(9) *P. putida* proteins are similarly susceptible to oxidative protein damage when cells are irradiated anaerobically (+Ar) or aerobically (+O₂). *P. putida* was grown to OD₆₀₀ approximately 0.9 in TGY, purged with ultra-high purity Ar, and irradiated in sealed tubes to 4 kGy. Values for intracellular Mn/Fe concentration ratios and D₁₀ at the bottom of (B), (C), and (D), as reported previously [1]. A total of 20 μg of protein extract loaded per lane.

C, Coomassie-stained polyacrylamide denaturing gel; M, mixture of artificial IgG-binding protein standards; O, oxidized protein standards; S, wide-range protein standards; Δ, DNPH treated; ΔΔ, DNPH untreated.

doi:10.1371/journal.pbio.0050092.g004

Figure 4. Additional Oxidative Protein Damage Assays

(A) In vitro IR-induced oxidative protein damage. Western blot (W) immunoassay of protein-bound carbonyl groups in *D. radiodurans* (non-irradiated) cell extract adjusted to 500 μM FeCl₂ and irradiated to the indicated doses. A total of 20 μg of protein extract loaded per lane.

(B) Mn-depleted, radiosensitive *D. radiodurans* cells [1] are highly susceptible to oxidative protein damage during irradiation. *D. radiodurans* was grown in OD₆₀₀ 0.8 and exposed aerobically to 10 kGy. A total of 20 μg of protein extract loaded per lane.

(C) Decreased survival of *D. radiodurans* irradiated at pH 10.5 correlates with oxidative protein damage. *D. radiodurans* was grown to OD₆₀₀ approximately 0.9 in TGY (pH 7), adjusted to pH 10.5, and exposed aerobically to the indicated doses. A total of 20 μg of protein extract loaded per lane.

(D) *P. putida* proteins are similarly susceptible to oxidative protein damage when cells are irradiated anaerobically (+Ar) or aerobically (+O₂). *P. putida* was grown to OD₆₀₀ approximately 0.9 in TGY, purged with ultra-high purity Ar, and irradiated in sealed tubes to 4 kGy.

Distribution of Mn and Fe in *D. radiodurans*

Because the formation of ROS during irradiation is extremely rapid [15], an intracellular protection system which is ubiquitous, but not highly dependent on the induction of enzymes, stage of growth, or temperature over a range at which cells are metabolically active, could provide a selective advantage to the host in some environments. In this context, we examined the intracellular distribution of Mn and Fe in *D. radiodurans* cells using X-ray fluorescence (XRF) microprobe analysis [25] (Figures 6C and S3). Within a
representative diplococcus, whereas Mn(II) was globally distributed, Fe was partitioned largely outside the cytoplasm in a region overlapping the septum between dividing cells (Figure 6D).

Discussion

We previously demonstrated a critical role for the accumulation of Mn(II) in *D. radiodurans* in a mechanism toward surviving IR that is not dependent on Mn-SOD (Mn-dependent superoxide dismutase) [1]. *D. radiodurans* contains four to ten identical copies of its genome per cell, and when irradiated to a dose of 10 kGy, generates more than 400 genomic DSB fragments per cell [1,8,26]. Yet, this amount of DNA damage in *D. radiodurans* does not typically lead to cell death [1,8]. Bioinformatic and experimental reports generally support that genome configuration and copy number, and enzymatic protection and repair functions of *D. radiodurans* do not have unique properties that are essential or prerequisite for expression of the extreme-resistance phenotype [1–12]. For example, *D. radiodurans* DNA repair and protection genes do not differ greatly from their counterparts in the IR-sensitive *S. oneidensis*, *P. putida*, or *E. coli* [1,6]; several *E. coli* DNA repair genes have been shown to fully restore corresponding radiation-sensitive *D. radiodurans* mutants to wild-type levels of *D. radiodurans* resistance [12,27]; Mn-SOD is not needed for survival of *D. radiodurans* following acute irradiation or growth under 50 Gy/h [1,11]; non-homologous end joining of *D. radiodurans* chromosomal DSB fragments following IR is not observed [28]; and the products of interchromosomal recombination in *D. radiodurans* following irradiation are consistent with the canonical version of the DSB repair model [8]. Over the last decade, several hypotheses to reconcile these findings have built on the idea that *D. radiodurans* might use mechanisms that restrict the diffusion of DNA DSB fragments produced following irradiation, to facilitate repair [3,29]. However, transmission electron microscopy [TEM] of Mn-depleted, radiosensitive *D. radiodurans* displayed normal levels of chromosomal condensation [1], and cryoelectron microscopy of vitreous sections of *D. radiodurans* supports the conclusion that DNA fragments in *D. radiodurans* are mobile and that the arrangement of its nucleoids does not play a key role in radioresistance [10,30]. Consistently, a series of earlier molecular studies on irradiated *D. radiodurans* cells showed high levels of recombination between homologous DSB fragments originating from widely separated genomic locations [8,28,31]. Evidence presented here supports the idea that the extreme-resistance phenotype of *D. radiodurans* and other bacteria with high intracellular Mn/Fe concentration ratios is dependent on a mechanism that protects proteins from oxidative damage during irradiation, which could offset the need for highly specialized cellular repair systems.

Previous work has shown that the linear density of DSBs introduced into genomic DNA by a given dose of IR in extremely resistant and sensitive bacteria is essentially the same [1,2]. In contrast, we find that protein damage is quantifiably related to bacterial radioresistance (Figures 3, 4B, and 4C). The most-sensitive cells had very low Mn/Fe concentration ratios and were highly susceptible to IR-induced protein oxidation, whereas the most-resistant cells had high intracellular Mn/Fe ratios and were relatively insensitive to protein oxidation. Although the mechanism by which Mn protects proteins during irradiation remains unknown, our results provide insight into how Mn redox cycling could attenuate the detrimental effects of Fe redox cycling.

Scavenging of ROS in IR-resistant bacteria may be linked
to both the presence of Mn and relatively low cytosolic levels of Fe (Figure 6C and 6D) [1]. Our observation that resistant bacteria released H$_2$O$_2$ during irradiation, but sensitive bacteria did not (Figure 5A), is consistent with the idea that Fe redox cycling is limited in Mn-accumulating cells. Most bacteria accumulate near-millimolar concentrations of intracellular Fe, primarily for assembly of Fe-S and haem proteins [1,32,33]. However, resistant bacteria typically encode fewer proteins with Fe-S domains than sensitive bacteria [4]. Since IR-induced ROS likely damage exposed Fe-S clusters, releasing Fe(II) [16,32], Fe-laden sensitive cells might be predisposed to Fe redox cycling reactions during irradiation. Since 5 mM Mn(II) does not significantly scavenge HO* (Figure 2A), Mn redox cycling likely does not protect cells from HO* generated either directly by water radiolysis or indirectly by the Fenton (Fe(II)) reaction (Figure 1) [15]. However, the Haber-Weiss (Fe(III)) reaction (Figure 1) [15] generates O$_2$*, which under IR would give rise to O$_2$** and other peroxyl radicals (R- O$_2$*) (Figure 1) [15]. Compared to HO*, O$_2$** is relatively unreactive with a large number of compounds including DNA, but can undergo chain reactions leading to organic hydroperoxides [15], which decompose in the presence of Fe to give new radicals, including oxidizing alkoxyl radicals that are more reactive than peroxyl radicals [15,34]. Although intracellular Mn(II) does not protect cells from DNA damage caused by HO* [1], scavenging of simple peroxyl radicals by Mn redox cycling might prevent the propagation of secondary reactions that ultimately damage proteins [15,16,34].

The exceptionally high catalase activities of *D. radiodurans* [11] might be expected to favor the accumulation of Mn(III) (Figure 1), a strong oxidant capable of damaging cell

Figure 6. IR Resistance and Mn Profiles of *D. radiodurans*

(A) XANES absorption spectra. Top, Mn standards: MnCl$_2$ (Mn(II)), γ-MnOOH (Mn(III)), and MnO$_2$ (Mn(IV)). Bottom, *D. radiodurans*. Control: No IR, analyzed frozen (−14 °C). DR-1: +10 kGy (−78 °C), analyzed frozen (−14 °C). DR-2: +10 kGy (−78 °C), analyzed thawed (5 °C).

(B) pH-dependent IR survival of *D. radiodurans*. Top, cells were grown in TGY (pH 7), irradiated (60Co) in TGY (0 °C) at the indicated pH, neutralized, and then recovered on TGY (pH 7). Bottom, survival of non-irradiated *D. radiodurans* grown in TGY (pH 7), then held in TGY (0 °C) at the indicated pH for 16 h, neutralized, and then plated on TGY (pH 7). IR survival assays as described previously [1].

(C) XRF elemental distribution maps of Mn and Fe in *D. radiodurans*. The *D. radiodurans* diplococcus (designation: no. 109) was isolated from the mid-logarithmic growth phase (OD$_{600}$ 0.3). For additional XRF microprobe analyses (P, Cl, Mn, Fe, Co, Ni, and Cr), see Figure S3.

(D) Transparent image overlay of TEM, LM, and XRF measurements, and ppm contour lines displayed in (C).

doi:10.1371/journal.pbio.0050092.g006
components [13]. We did not detect significant levels of Mn(III) or Mn(IV) in irradiated or non-irradiated *D. radiodurans* by X-ray-absorption near-edge structure (XANES) spectroscopy (Figure 6A), indicating that Mn(III) might also be reduced by other mechanisms in vivo. Notably, when Mn is complexed with succinate or lactate in vitro, the efficiency of Mn redox cycling is greatly increased, such that Mn(III) reactivity is similar to that of Mn(II) complexes and re-reduction of Mn(III) by O$_2$ might occur [13]. In this context, metabolic pathway switching in *D. radiodurans* cells immediately after irradiation has been reported to favor the production of succinate via up-regulation of the glyoxylate bypass of its tricarboxylic acid (TCA) cycle, and down-regulation of degenerative steps of the TCA cycle [4,5,9]. In bicarbonate/CO$_2$ buffer, Mn(II) is reported to catalyze the oxidation of free amino acids such as leucine and alanine by H$_2$O$_2$ and the dismutation of H$_2$O$_2$ [35]. Thus, complexes containing Mn and amino acids or organic acids might scavenge H$_2$O$_2$ in addition to O$_2$* in cells exposed to IR.

An interesting feature of the systems for energy production in *D. radiodurans* is that, unlike most other free-living bacteria, it uses the vacuolar type of proton ATP synthase instead of the F$_1$F$_0$ type [6]. Vacuolar (V)-type H$^+$-ATPases are typical of eukaryotes and archaean, and central players in intracellular acidification [36], which might facilitate Mn redox cycling by providing H$^+$ (Figure 1). In this context, our findings generally support bioinformatic studies by Karlin and Mrázek in 2001 [37], who proposed a new explanation for the resistance of *D. radiodurans* contingent on a role of predicted highly expressed (PHX) genes for proteases, the glyoxylate bypass of the TCA cycle, ABC-type transporters of amino acids and Mn, and (V)-type ATPases.

The speciation, distribution, and relatively high concentration of Mn in *D. radiodurans* [1] (Figure 6A and 6C) support the idea that Mn(II) could provide immediate cytosolic protection from O$_2$* and facilitate removal of H$_2$O$_2$ from cells exposed to IR. Further, electron-dense granules (EDGs) (Figure 6C, TEM, circular dark ~ 0.2 μM inclusions), which are frequently observed in electron microscopy images at the center of *D. radiodurans* nucleoids [1,4,10], were associated with the highest regional Mn concentrations (200 parts per million [ppm]; 3.6 mM) (Figure 6D), perhaps to protect enzymic DNA repair functions, many of which are dependent on redox-active [4Fe-4S] clusters [38]. Importantly, our findings do not preclude the possibility that intracellular Mn(II) also prevents lipid peroxidation in cell membranes. In this context, however, the lowest regional Mn concentrations (50 ppm) were associated with the cell envelope [6] (Figures 6C and S3), indicating that Mn(II) predominantly protects the cytosol; and earlier reports strongly support the idea that lipid peroxidation can be dissociated from lethal damage in irradiated mammalian and irradiated bacterial cells [34,39]. During recovery of irradiated *D. radiodurans*, additional damage might be limited by secondary antioxidant defenses, including attendant cellular responses that limit the production of metabolism-induced ROS [4,9], and degradation of oxidized proteins by the expanded family of subtilisin-like proteases [6]. The Mn content of bacteria [1] might also determine the amount of protein damage caused in cells exposed to other oxidative stress-inducing conditions, including desiccation [1,6,24] and ultraviolet (UV) radiation [5,12], and xenobiotic agents such as Cr(VI) and mitomycin-C (MMC) that elicit redox-related toxicity [40].

Chromosomal DNA is an indispensable molecule whose integrity must be conserved following exposure of a cell to IR to ensure survival [15], such that the functionality of DNA repair and replication systems ultimately determines if an irradiated cell lives or dies, even for the most IR-resistant bacteria [6,12,27]. Our findings that IR-induced cellular protein damage (Figures 3 and 4), but not DNA damage [1,2], is quantifiably related to radioresistance, and intracellular Mn/Fe concentration ratios could help explain why bacteria that encode a similar repertoire of DNA repair functions display such large differences in IR resistance [1,3,5]. Specifically, we propose that redox cycling of Mn(II) that is accumulated in resistant bacteria [1] protects proteins from oxidation during irradiation (Figure 1), with the result that enzyme systems involved in recovery survive and function with great efficiency. This could explain why the polA gene of *E. coli* fully complements IR-, UV- and MMC-sensitive *D. radiodurans* polA mutants [12]. In comparison, we attribute the high level of radiation sensitivity of Fe-rich, Mn-poor bacteria to their susceptibility to global Fe-mediated oxidative protein damage during irradiation under aerobic or anaerobic conditions (Figure 4D). Oxidative modification of proteins by IR could disrupt cellular functions involved in DNA repair either by loss of catalytic and structural integrity or by interruption of regulatory pathways, which in extremely radiation-sensitive cells might render protein damage lethal before significant DNA damage has accumulated [5]. At sublethal IR doses in sensitive cells, oxidatively damaged DNA repair enzymes would be expected to passively promote mutations by misrepair. Oxidized proteins, however, might also actively promote mutation by transmitting damage to other cellular constituents, including DNA [34,41]. In conclusion, our data provide a novel framework for understanding how intracellular Mn and Fe contribute to IR resistance, which is important since these findings may come to affect models of radiation toxicity, as well as approaches to control recovery from radiation injury [42], including the development of systems for delivery into cells of Mn-based radioprotective complexes or Fe-based radiosensitizers [43].

Materials and Methods

Strains. The wild-type strains used were as follows: *D. radiodurans* (ATCC BAA-816); *D. geothermalis* (DSM 11390); *S. oneidensis* (MR-1) (ATCC 700550); *P. putida* (ATCC 47054); *Enterococcus faecium* (ATCC 19434); *L. plantarum* (ATCC 14917); and *E. coli* (K-12) (MG1655).

Growth and γ-irradiations. Strains were cultured aerobically in undefined liquid rich medium [1] (TYG: 1% Bacto-tryptone, 0.1% glucose, 0.5% yeast extract) (pH 7) at 32°C to an optical density at 600 nm (OD$_{600}$) of 0.9–1.0, unless indicated otherwise. For anaerobic irradiations, 6-ml 0–1,000 mM MnCl$_2$ solutions in dH$_2$O (pH ~6), or approximately 1 × 1010 bacterial cells (~5 × 106 diplococci) re-suspended in 6-ml dH$_2$O, were transferred to Quick-Seal ultracentrifuge tubes (13 cm) (Beckman Instruments, Palo Alto, California, United States), unless indicated otherwise. The tubes were purged at room temperature with ultra-high purity Ar (99.999%) (ValleyNational Gases, Frederick, Maryland, United States) for 5 min (200 cm3/min), sealed anaerobically, and irradiated on ice (0°C) at 1.8 Gy/s (60Co, Model 109; J. L. Shepard and Associates, San Fernando, California, United States).

pUC19 and BamH1 IR sensitivities. The pUC19 assay was performed as follows. Supercoiled pUC19 (1 mg/ml) (New England Biolabs, Ipswich, Massachusetts, United States) was diluted (125) in dH$_2$O, 1% DMSO, or 5 mM MnCl$_2$, 50-μl aliquots of each of the three pUC19 dilutions were irradiated (60Co) at 0°C to the
indicated doses. A total of 88 ng of each IR-treated pUC19 sample was subjected to agarose (0.7%) gel electrophoresis in 1 × TBE (Tris, borate, EDTA buffer) and 250-ng/ml ethidium bromide, at 47 V for 14 h. Linearized plasmid (Lp) (pUC19 + BamHI) was used as a marker in gels containing IR-treated supercoiled pUC19.

BamHI digestion was performed as described. BamHI (700,000 U/ml) (New England Biolabs) was diluted to 1/110,500 in 0.1 M NaCl, 10 mM Tris-HCl (pH 7.9), and 10 mM MgCl₂. 1,000-μl aliquots of each of the BamHI dilutions were irradiated (250°C) aerobically at 0°C to the indicated doses. For anaerobic BamHI irradiations, 5-ml aliquots of diluted BamHI in 0.1 M NaCl, 10 mM Tris-HCl, and 10 mM MgCl₂ were transferred to separate Quick-Seal ultracentrifuge tubes (13 cm³) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-HCl (pH 7.9), 1 μg/ml proteinase K, and 1 mM dithiothreitol. DNA reactions were incubated for 1 h at 37°C, followed by agarose (0.7%/1× TBE) gel electrophoresis at 25 V for 18 h.

Protein extractions. The 650-ml cultures of the indicated bacteria grown in TGY to OD₆₀₀ 0.9 were harvested by centrifugation, resuspended in 30 ml TGY, and exposed to IR at 0°C. Irradiated and non-irradiated (control) cells were washed and then resuspended in lysis buffer (50 mM potassium phosphate buffer [pH 7.0], 0°C). A cell suspension was sonicated on ice in a sonication cell (20-μg-l protein) and passed through a French pressure cell (15 cm²) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-HCl (pH 7.9), 1 μg/ml proteinase K, and 1 mM dithiothreitol. DNA reactions were incubated for 1 h at 37°C, followed by agarose (0.7%/1× TBE) gel electrophoresis at 25 V for 18 h.

Protein extractions. The 650-ml cultures of the indicated bacteria grown in TGY to OD₆₀₀ 0.9 were harvested by centrifugation, resuspended in 30 ml TGY, and exposed to IR at 0°C. Irradiated and non-irradiated (control) cells were washed and then resuspended in lysis buffer (50 mM potassium phosphate buffer [pH 7.0], 0°C). A cell suspension was sonicated on ice in a sonication cell (20-μg-l protein) and passed through a French pressure cell (15 cm²) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-HCl (pH 7.9), 1 μg/ml proteinase K, and 1 mM dithiothreitol. DNA reactions were incubated for 1 h at 37°C, followed by agarose (0.7%/1× TBE) gel electrophoresis at 25 V for 18 h.

Protein extractions. The 650-ml cultures of the indicated bacteria grown in TGY to OD₆₀₀ 0.9 were harvested by centrifugation, resuspended in 30 ml TGY, and exposed to IR at 0°C. Irradiated and non-irradiated (control) cells were washed and then resuspended in lysis buffer (50 mM potassium phosphate buffer [pH 7.0], 0°C). A cell suspension was sonicated on ice in a sonication cell (20-μg-l protein) and passed through a French pressure cell (15 cm²) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-HCl (pH 7.9), 1 μg/ml proteinase K, and 1 mM dithiothreitol. DNA reactions were incubated for 1 h at 37°C, followed by agarose (0.7%/1× TBE) gel electrophoresis at 25 V for 18 h.

Protein extractions. The 650-ml cultures of the indicated bacteria grown in TGY to OD₆₀₀ 0.9 were harvested by centrifugation, resuspended in 30 ml TGY, and exposed to IR at 0°C. Irradiated and non-irradiated (control) cells were washed and then resuspended in lysis buffer (50 mM potassium phosphate buffer [pH 7.0], 0°C). A cell suspension was sonicated on ice in a sonication cell (20-μg-l protein) and passed through a French pressure cell (15 cm²) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-Hcl, and 10 mM MgCl₂. 1,000-μl aliquots of each of the BamHI dilutions were irradiated (250°C) aerobically at 0°C to the indicated doses. For anaerobic BamHI irradiations, 5-ml aliquots of diluted BamHI in 0.1 M NaCl, 10 mM Tris-HCl, and 10 mM MgCl₂ were transferred to separate Quick-Seal ultracentrifuge tubes (13 cm³) (Beckman Instruments), purged at room temperature with ultra-high purity Ar (99.999%) (Valley National Gases) for 5 min (200 cm³/min), and sealed anaerobically before irradiation. A total of 40 μl (23 units) of each IR-treated BamHI sample was transferred to separate reaction mixtures (final volume, 60 μl) containing 250-ng-λ-phase DNA (New England Biolabs), 50 mM NaCl, 10 mM Tris-HCl (pH 7.9), 1 μg/ml proteinase K, and 1 mM dithiothreitol. DNA reactions were incubated for 1 h at 37°C, followed by agarose (0.7%/1× TBE) gel electrophoresis at 25 V for 18 h.
TEM. Whole cells deposited on formvar-coated gold TEM grids and analyzed by XRF microprobe analysis were subsequently imaged in a FEI Tecnai TF30 transmission electron microscope equipped with a field-emission gun and operated at an accelerating voltage of 300 kV. An objective aperture with a diameter of 40 μm was selected to optimize contrast due to differences in elastic scattering across the specimen. Bright-field images of the electrons were recorded using a Gatan Ultrascans Model 894 cooled CCD camera containing four mega-pixels and operated with a four-port parallel read-out. Images were analyzed using Gatan Digital Micrograph software (version 3.4). Pixel intensities were transformed to a logarithmic scale to visualize the EDGs (~0.2 μm in diameter) in cells.

LM. LM was used to identify the position coordinates of discrete diplococci on formvar-coated gold TEM grids before XRF microprobe analysis (Figure S3); gold grids were supported by glass slides during LM. LM images were captured using a Leica DM RXA epifluorescence microscope (Leica, Wetzlar, Germany). Differential interference contrast images were recorded using a Scion Corporation (Frederick, Maryland, United States) CCD camera and analyzed with xyzGrabber.

Supporting information

Figure S1. Additional Assays for O₂/H₂O₂
(A) Indigo carmine assay (ICA) (CHEMetrics). Control (No IR). dH₂O and MnCl₂ solutions were pre-conditioned by purging with O₂-free N₂ (anaerobic).
(B) As for (A), but exposed to IR (10 kGy).
(C) O₂/H₂O₂ was not detected in irradiated (10 kGy) TGY solid medium. After irradiation of TGY agar under O₂-free N₂, anaerobic dH₂O was equilibrated in the agar tubes for 24 h before testing with the ICA and Rhodazine D assay (RDA).
(D) RDA. IR-dependent O₂/H₂O₂ formation in irradiated 2 mM MnCl₂ solutions (anaerobic).
(E) ICA. IR-dependent O₂/H₂O₂ formation in irradiated MnCl₂ solutions (anaerobic).
(F) As for (E), but O₂/H₂O₂ determined by the RDA.
(G) Reference ICA color standards. A sample tube is shown: 10 mM MnCl₂+IR (10 kGy).
(H) Reference RDA color standards.

Theoretical rate constants for primary radiolytic reactions (The Radiation Chemistry Data Center: http://www.rcdc.nd.edu/RCDC/) were pre-conditioned by purging with O₂-free anaerobic dH₂O do not favor significant accumulation of H₂O₂ or O₂, which we did not detect in irradiated anaerobic dH₂O or dilute MnCl₂ solutions. Theoretical rate constants for primary radiolytic reactions (The Radiation Chemistry Data Center: http://www.rcdc.nd.edu/RCDC.html) are plotted to different scales designated by a single-color box, where yellow represents the highest concentration and black the lowest; ppm values in parentheses next to the element symbol correspond to yellow. For example, in (B), yellow corresponds to 290 ppm for the Mn map, but only 80 ppm for the Fe map.

Found at doi:10.1371/journal.pbio.0050092.s0003 (699 KB PDF).

Acknowledgments

We are grateful to Carol Giometti (Biosciences Division) at Argonne National Laboratory for suggesting investigations on protein carbonization, and Sofía del Castillo at Uniformed Services University of the Health Sciences (USUHS) for technical support.

Author contributions. MJD, EKG, VYM, AV, RDL, BL, BR, MKM, and JKF conceived and designed the experiments. EKG, VYM, AV, MA, RDL, BL, SR, S-MWL, and KMK performed the experiments. MJD, EKG, VYM, AV, RDL, BL, BR, MKM, and JKF analyzed the data. MJD wrote the paper, with contributions from JKF.

Funding. This work was supported by grant DE-FG02-04ER63918 to MJD from the US Department of Energy (DOE), Office of Science (OS), Environmental Remediation Sciences Program (ERSP). The Advanced Photon Source and the Materials Research Collaborative Access Team are supported by DOE, OS, Basic Energy Sciences. The work of MKM and BR at the APS was also supported by DOE, OS, ERSP. The work of RDL was supported by the Intramural Program of the National Institutes of Health.

Competing interests. The authors have declared that no competing interests exist.

References

