Divergent Selection on Opsins Drives Incipient Speciation in Lake Victoria Cichlids

Yohey Terai1, Ole Seehausen23*, Takeshi Sasaki4, Kazuhiro Takahashi4, Shinji Mizoiri4, Tohru Sugawara1, Tetsu Sato1, Masakatsu Watanabe1, Nellie Konijnendijk2, Hillary D. J. Mrosso5, Hidenori Tachida6, Hiroyo Imai78, Yoshinori Shichida78, Norihiro Okada14*

1 Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan, 2 Department of Aquatic Ecology and Evolution, Institute of Zoology, University of Bern, Bern, Switzerland, 3 EAWAG Ecology Center, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland, 4 Division of Speciation, National Institute of Basic Biology, Okazaki, Aichi, Japan, 5 Tanzania Fisheries Research Institute, Mwanza Fisheries Research Center, Mwanza, Tanzania, 6 Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan, 7 Department of Biophysics, Graduate School of Science, Kyoto University, Japan, 8 Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto, Japan

Introduction

Adaptive radiation, the generation of ecological diversity in a rapidly multiplying lineage, is receiving much attention by evolutionary biologists and ecologists because it is thought to be a force able to quickly generate large numbers of new species and ecological diversity through multiple episodes of ecological speciation [1]. Divergent natural selection (selection on ecologically relevant traits that favors different alleles in different environments) is thought to be its main driver [1,2]. It can potentially cause ecological differentiation and speciation simultaneously when its action on ecological traits in contrasting environments affects mate choice as a byproduct [1]. The concept of by-product speciation is theoretically and mathematically well established [1,3], and experimental evidence supports that the mechanism works [2,4,5]. However, because the genes responsible for variation in ecological and mating traits are rarely identified, the hypothesis has remained largely untested at the gene level. In particular, that selection has fixed alleles with opposite effects on an adaptive trait in different closely related populations has rarely been demonstrated [6,7], and to our knowledge, not for traits that affect adaptation and mating preferences simultaneously, even though chromosomal regions with effects on both have been singed out by quantitative trait locus mapping [4,5]. Yet, without such demonstration, the discussion about the role of divergent natural selection in speciation remains somewhat speculative.

African cichlid fish are becoming a model system for the genetics of vertebrate speciation and adaptive radiation [8]. Lake Victoria, the largest of the African great lakes, hosts the youngest of the large cichlid radiations. Geological evidence even suggests that Lake Victoria dried up at the end of the Pleistocene and refilled only 15,000 years ago [9]. Levels of polymorphism in mitochondrial DNA suggest that the neutral genetic diversity contained in the radiation is less than 200,000 y old [10] and may indeed be younger [11]. Surprisingly, despite 10-fold lower mitochondrial DNA diversity, the phenotypic diversity among Lake Victoria cichlids is similar to that in the several-million-y-old-Lake Malawi [12]. This implies rapid selection-driven diversification in Lake Victoria but remained untested at the gene level.

Male nuptial coloration is one of the most amazingly variable phenotypic traits among Lake Victoria cichlid fish. Water is a dense medium that generates highly heterogeneous light environments that fish have to adapt their visual systems to. Visual pigments in the photoreceptor cells of the retina consist of a light-absorbing component—the chromophore—and a protein moiety, the opsin [13]. The light sensitivity of a visual pigment is determined by the chromophore (A1 [11-cis-retinal] or A2 [11-cis-3, 4-dehydroretinal] pigments) and by its interaction with the amino acid residues coating the retinal binding pocket of the opsin in which the chromophore lies [14].

In haplochromine cichlids, eight different opsins have been found [15–18]. As predicted by adaptive evolution, the most variable between species are those that absorb at the extreme long wavelengths.
ends of the light spectrum where most environmental variation in light transmission is found: short wavelength-sensitive opsin 1 and long wavelength-sensitive opsin (LWS) [17].

Within Lake Victoria, LWS, which has a peak value of light absorption (λ_{max}) at long (red) wavelengths [16], is by far the most variable opsin [17]. LWS is a candidate for a gene under strong divergent selection in Lake Victoria, because it entails five times more variation in the cichlids of Lake Victoria than in the at least 10-fold older Lake Malawi cichlid radiation [19,20]. The photic environment in Lake Victoria is characterized by much steeper gradients in water clarity, light intensity, and spectral composition [21]. Given the importance of vision in food acquisition, predator avoidance, territorial defence, and mate choice of cichlid fish, these gradients are likely exerting strong selection on opsin genes and on associated mating traits. In several pairs of closely related species of Lake Victoria cichlids, the species with the larger LWS λ_{max} has red male breeding colors and lower detection thresholds for red light, whereas the species with smaller LWS λ_{max} has blue breeding colors and is less sensitive to red light and more sensitive to blue light, consistent with sensory drive (divergence in male coloration evolving as a consequence of divergent visual sensitivities) [20,22,23]. Hence, the LWS gene may be involved in ecological adaptation and mate choice simultaneously. Here we demonstrate evolution in LWS under strong divergent ecological selection along an environmental gradient, and we show correlated divergence in male nuptial coloration, implicating population divergence through sensory drive.

Results/Discussion

Population Divergence at the LWS Gene

We studied multiple populations of each of four different Lake Victoria cichlid species along a 100-km-long cline in water clarity (Figure 1A). All four have lake-wide but patchy distributions, being restricted to rocky islands and headlands: *Neochromis greenwoodi* (including its offshore incipient species *N. omnicaeruleus* [24]), *Neochromis rufocaudalis*, *Mbipia mbiyi*, and *Pundamilia pundamilia* [24]. We determined the sequences of exons 2–5 of *Pundamilia pundamilia* [24]. We sequenced the exons of the LWS gene for 177S (529T) and 275C (823T and 824G). The M1 group includes all alleles with 177A (529G) and 275C (823T and 824G). The H group includes all alleles with 177A (529G) and 275C (823T and 824G). The M1 group includes all alleles with 177A (529G) but 275T (823A and 824T). The M2 group includes all alleles with 177S (529T) but 275C (823T and 824G). M1 and M2 alleles can be considered recombinants of L and H alleles or intermediate alleles. The frequencies of allele groups in the ten populations are shown in Figure 1C.

In populations that live in very turbid water (<80 cm Secchi disk transparency), the L group alleles appeared to be fixed or almost fixed (station 2: number of L alleles [L] = 57, 98.3% and station 3: L = 10, 100%) (Figures 1C and S2). On the other hand, the H group alleles (H) appeared to be fixed in all the offshore island populations with high water transparency (≥180 cm; station 14: H = 8, 100%, station 15: H = 50, 100%, station 10: H = 40, 100%) (Figures 1C and S2). With one exception (one H group allele at station 2), the L and H allele groups were observed only in populations that live in waters of equal to or less than, and equal to or more than 85 cm Secchi transparency, respectively (Figure 1C).

Mantel tests [27] of the significance of correlations between matrices of (i) pairwise population differentiation at the LWS locus, (ii) pairwise difference in water transparency, and (iii) pairwise geographical distance, revealed a highly significant positive correlation between LWS divergence and transparency (cross matrix correlation 0.80, $p = 0.0008$), but only a weak correlation between LWS divergence and geographical distance ($r = 0.55, p = 0.04$), and an even weaker correlation between transparency and geographical distance (0.42, $p = 0.08$). The clinal change from L-dominated to H-dominated populations through populations dominated by the recombinant/intermediate allele groups M1 and M2 is consistent with gene flow between populations in a stepping stone fashion. We estimated the number of migrants per generation (M) from neutral marker FST (Table S1) [M = (1/FST – 1)/4] as M = 5.6 between the most turbid inshore station 2 and the most clear offshore station 10, M = 7.6 between station 2 and the offshore Namatembi Island (station 15), and M = 14.5 between the two clear offshore stations 10 and 15. However, FST-derived estimates of M should be taken with great caution because they rely on the assumptions of Wright’s island model [28] (all populations have the same population size and migration rate, are in migration/drift equilibrium, equally
likely to give and receive migrants from all other populations, and the number of alleles is infinite) [29]. Our estimates of gene flow between the most distant and the most environmentally distinct islands may be taken as a clear indication that significant differentiation at the LWS locus between any two geographically closer populations on our transect requires divergent selection on LWS to overcome gene flow.

Divergent Selection Acting on LWS Gene

To search for the molecular signature of divergent natural selection between populations, we analyzed sequences upstream and downstream of LWS. The DNA fragments including the LWS gene and its 5-kilobase (kb) upstream and 3.5-kb downstream flanking sequences (total 11 kb) were amplified by long PCR, and 10.5 kb were determined. We sequenced 18

Figure 1. Maps and Frequencies of LWS Alleles

(A) The study area in southern Lake Victoria. Arabic numerals indicate stations at which cichlids were collected. The Secchi disk water transparency (cm) at each station is shown in parentheses. The stations are: 1, Buyago Rocks; 2, Marumbi Island; 3, Matumbi Island; 4, Luanso Island; 5, Python (Nyamatala) Islands; 6, Kissenda Island; 7, Hippo Island; 8, Juma Island; 9, Bwiru Point; 10, Makobe Island; 11, Igombe Island; 12, Ruti Island; 13, Senga Point; 14, Sozihe Islands; 15, Namatembi Island; 16, Nyamatala (Nyameruguyu) Island; 17, Gabalema Islands; 18, north end of Luanso Bay. Where the local name differs from that used in previous publications, the local name is indicated in parenthesis.

(B) A representation of the microhabitat distribution of the studied species by water depth and between, as opposed to outside, the rocky boulders. Photos show males of the blue morph in nuptial coloration. “Affected” and “Non-affected” indicate the species with the LWS allele frequencies that are strongly affected and not strongly affected by variation in water transparency, respectively.

(C) LWS allele group frequencies in the populations of N. greenwoodi/omnicaeruleus.

(D) LWS allele group frequencies in the populations of M. mbipi.

(E) LWS allele group frequencies in the populations of N. rufocaudalis.

(F) LWS allele group frequencies in the populations of P. pundamilia.

In (B–E), Arabic numerals correspond to those in (A). The size of a pie indicates the number of haplotypes sequenced: N. greenwoodi: n = 58 at station 2; n = 10 at 3; n = 14 at 5; n = 10 at 7; n = 14 at 9; n = 22 at 11; n = 8 at 13; n = 50 at 15, and N. omnicaeruleus, n = 40 at 10. M. mbipi: n = 36 at station 5; n = 32 at 7; n = 30 at 10; n = 10 at 11; n = 2 at 13. N. rufocaudalis: n = 42 at station 5; n = 16 at 6; n = 10 at 10; n = 10 at 16; n = 6 at 17; n = 4 at 18. P. pundamilia: n = 2 at station 1; n = 10 at 2; n = 4 at 3; n = 8 at 4; n = 18 at 5; n = 8 at 6; n = 6 at 8; n = 6 at 9; n = 10 at 10; n = 11; n = 8 at 12. The color of the sections of the pie indicates the frequency of allele groups L (red), M1 (yellow), M2 (green), H (blue), M3 (orange), P (blue-green), and other alleles (black). The amino acid differences among allele groups are shown for every species in the corresponding white panels.

DOI: 10.1371/journal.pbio.0040433.g001
alleles (from nine individuals of *N. greenwoodi/bomicaeruleus*) from each of the Marumbi (station 2), Makobe (station 10), and Namatembi (station 15) populations. Sliding window analysis revealed that population differentiation in the LWS gene region between populations from clear and turbid waters ($F_{ST} > 0.8$) (Figure 2A, Makobe-Marumbi, black line; Namatembi-Marumbi, blue line) was at least four times larger than in unlinked neutral polymorphic loci ($F_{ST} < 0.2$) and 17 times larger than in unlinked neutral polymorphic loci ($F_{ST} < 0.046$; Table S1). Populations in clear and turbid waters are strongly differentiated from one another only in the sequences of the LWS gene region. The contrast between differentiation in LWS gene region versus flanking sequences was shown to be statistically significant by applying the McDonald test [30] (Makobe: $p < 0.0001$, Namatembi: $p < 0.0001$, Marumbi: $p < 0.024$, with the recombination parameter set to 2, 4, 10, 32, and 1000 replicates) and was further supported by HKA tests [31] revealing a significantly smaller ratio of within-population polymorphism to between-population divergence in the LWS gene region than in up- and downstream flanking regions (Table S2). The larger F_{ST} value can be caused either by stronger differentiation between populations or by reduced variation within populations [32]. In the present case, the differentiation is caused by larger divergence of the region between exon 1 and exon 3 compared to those in other regions (Figure 2B, Makobe-Marumbi, black line; Namatembi-Marumbi, blue line). This result strongly suggests action of divergent selection on the LWS gene, possibly caused by the difference between clear and turbid waters.

In contrast, only weak population differentiation was observed throughout the sequences when we compared populations from similar water transparencies (Figure 2A, red line, Figure 2B, gray line: Makobe-Namatembi), and no evidence for divergent selection (HKA tests, Table S2). Hence, divergent selection has acted on the LWS alleles only between populations from different water transparencies, strongly implicating divergent adaptation to the different photic environments. The F_{ST} values in the LWS gene region imply fewer than one migrant every ten generations (<0.06 per generation), compared to about one migrant per generation in the up- and downstream regions, and six to eight at unlinked neutral loci. Hence, strong divergent selection effectively reduces migration in the LWS region compared to the rest of the genome by more than an order of magnitude. The F_{ST} values in 2–3 kb of sequences upstream of LWS were also higher than further up- and downstream, suggesting the possibility of genetic hitchhiking caused by further divergent selection on this region itself (Figure 2A, black and blue lines).

Parallel Divergent Adaptation of the LWS Gene

To determine the adaptive significance of the LWS divergence, we reconstituted the LWS pigments from both L and H alleles in vitro with both A1- and A2-derived retinal and measured their absorption spectra. The ratio of A1 to A2 chromophores in haplochrome cichlids was reported to be about ten to one [16]. We confirmed this ratio from laboratory-bred Lake Victoria cichlids and detected both chromophores in *N. greenwoodi* from the Mwanza Gulf by the method described previously [16]. Replacing an A1- by an A2-derived retinal shifts the λ_{max} value to a longer wavelength [33]. Even though in other vertebrates a 7-nm shift was reported even with A1 pigments for the amino acid replacement at the position corresponding to cichlid LWS position 177 (position 180 in human red and green pigments [14]), we did not observe any difference between A1 pigments of H and L alleles (Figure 3A and 3B). However, we found that the peak spectral sensitivity (λ_{max}) of the A2 pigment of the L allele was red shifted by 7 nm compared to that of the H allele (Figure 3C and 3D).

The transmission light spectra at different water transparencies in Lake Victoria were measured previously. Highly transparent waters transmit broad spectra, whereas the dissolved and dispersed organic matter in turbid waters selectively scatters and absorbs light of short wavelengths, leading to a shift in spectral composition towards longer wavelengths [21]. Although we do not rule out other functional differences between H and L alleles [13], the fixation in red-shifted turbid waters of the LWS alleles of the L group, from which we reconstituted a red shifted A2 pigment, is likely an adaptation to a photic environment enriched in longer wavelengths.

Our results on the three other species corroborate this conclusion. In *M. mbipi*, the species that is ecologically most similar to *N. greenwoodi* (Figures 1B and S1), populations from
high (258 cm Secchi, station 10, n = 30 alleles) and low (85 cm Secchi, station 5, n = 36 alleles) transparency were strongly differentiated in their LWS sequences too (Figure 1D, $F_{ST} = 0.54$, $p < 0.001$). Just like in *N. greenwoodi*, the clear water population of *M. mbipi* was fixed for H group alleles. Going into more turbid waters, the frequencies of these alleles stayed somewhat higher than in the somewhat deeper living sympatric *N. greenwoodi*. In contrast with *N. greenwoodi*, the *M. mbipi* population from the most turbid water in which this species was found (station 5) was dominated by a group of M3 alleles including all alleles with amino acid positions 177A (529G), 230T (688A), and 275I (823A and 824T) (Figures 1D and S3).

In *N. rufocaudalis*, a species that lives exclusively in very shallow waters (Figures 1B and S1), the allele of the H group that in the deeper living *N. greenwoodi* and *M. mbipi* dominated only in clear water populations dominated in all populations. One allele of the M2 group was found at a place of intermediate transparency, and the only two alleles of the L group came from the turbid end of this species’ distribution range (Figures 1E and S4). In the cave-dwelling *P. pundamilia*, populations from high and low water transparency were identical and a different allele group P (including all alleles with 177A, 179V, 216F, 230T, and 275I) dominated (Figures 1F and S3). Hence, (i) strong divergent evolution at the LWS locus between populations occurred in two species from photic habitats that are strongly affected by variation in water transparency, but not in two species whose habitats are not strongly affected; (ii) the transparency-associated geographical cline in allele frequencies observed within two species was mirrored by a depth-associated cline in allele frequencies between the three species—*N. rufocaudalis*, *M. mbipi*, and *N. greenwoodi*—that live outside the rocky crevices (Figure 1B). The parallel divergent adaptation in *N. greenwoodi* and *M. mbipi* is likely to include some true parallel evolution at the gene level, because visual adaptation to turbid water is achieved by substituting the clear water LWS allele H with different alleles in the two species (L and M3, Figure S6), which cannot be explained by very recent introgressive hybridization.

Correlation between Frequencies of LWS Allele and Male Nuptial Coloration

Nuptial color display is important in mate choice of Lake Victoria cichlids [21,34,35]. Female mating preferences may be affected by color vision [22,36], and closely related species with red versus blue male nuptial coloration possess LWS alleles with larger and smaller λ_{max} respectively, where the difference in λ_{max} is similar to the one observed here between L and H alleles [20]. It is therefore conceivable that the reciprocal fixation of LWS alleles with small and large λ_{max} would cause populations at the ends of the water transparency cline to diverge in nuptial coloration, a first step towards parapatric ecological by-product speciation [37]. We collected and photographed a large number of males in breeding dress from all populations of *N. greenwoodiomincaeruleus* and *M. mbipi* and determined the frequencies of male nuptial color morphs in each population. Globally, most males of these species are blue or blue-black, but yellow-red (*N. greenwoodiomincaeruleus*) or yellow (*M. mbipi*) males occur at low, but variable frequencies in much of their ranges. In the relatively turbid waters of Lake Victoria, yellow and red light travel further than blue light, and yellow and red colors may hence be perceived as brighter than blue at long path length (deeper water) [22]. This effect is stronger the more turbid the water [21].

In populations of *N. greenwoodiomincaeruleus*, the frequency of yellow-red males ranged from 0%–47% (Figure 4A) and was strongly positively correlated with the frequency of relatively longer wavelength–shifted LWS alleles (cross matrix correlation between population differentiation at the LWS locus and in color morph frequency 0.87, Mantel test $p =$...
Divergent Selection on Opsin Genes

Materials and Methods

Samples. Specimens of *N. greenwoodi*, *N. ornatecaeruleus*, *M. mbipi*, and *P. pseudamalia* were collected by OS in 1995 and 1996, except for 17 of the 25 individuals from Namatembi, which were collected in 2005 by TS, HM, and SM, 11 of 18 of *M. mbipi* from Python, and 12 of 16 from Hippo Island, which were collected in 2003 by NK and HM, and eight of 15 *M. mbipi* from Makobe, which were collected in 2004 by HM, SM, and S. Mzighani. Specimens will remain in the NOAA National Fish Collection, collected in 2004 and 2005 by SM, KT, and S. Mzighani. Identification of all specimens was verified by OS.

DNA sequencing. Determination of the cichlid *LWS* gene was as described [19]. To determine the *LWS* flanking sequences, the BAC clone including the *LWS* gene was screened and isolated from a Lake Victoria cichlid BAC library [39]. The DNA of BAC clone was digested with HindIII and subsequently subcloned into pUC 19 plasmid vector. The HindIII fragment including the *LWS* gene was screened, and the sequence determined by the shot-gun sequencing method described elsewhere [40]. Based on the sequence of that fragment, we designed primers for PCR amplification and performed direct sequencing. The positions of primers are described above and below the schematic HindIII fragment (Figure S7). The DNA fragment including *LWS* gene and both flanking regions was amplified by LA (long and accurate) PCR (TaKaRa, Shiga, Japan) using primers LWS_1F and LWS_1R with genomic DNA (~50 ng) as templates. Amplifications were carried out in the PTC-100 Programmable Thermal Controller (MJ Research, Massachusetts, United States). The PCR program consisted of a denaturation step for 3 min at 94 °C, followed by 30 cycles, each cycle consisting of 20 s denaturation at 98 °C, 15 min annealing and extension at 68 °C. The amplification product was then used as a template to amplify and sequence four overlapping fragments using the primers for upstream (LWSB_LF and LWSB_LR), downstream (LWSB_RF and LWSB_RR), and two primers for the HindIII fragment (Figure S7). Once determined, the sequences were used by the GENETYX-MAC Version 10.1 program. The sequences of primers are described in Figure S8.

Measurement of absorption spectra of cichlid *LWS* pigments. The *LWS* sequence was amplified via RT-PCR using total RNA extracted from eyes of Lake Victoria cichlid as template with a pair of PCR primers (Ec06LWS and LWS_FLAG-stop_NotI, Figure S8) designed to produce fusion protein with FLAG-tag (Sigma-Aldrich, St. Louis, Missouri, United States) in its C terminus. The amplified DNA fragments were digested with EcoRI and NotI and cloned into the EcoRI/NotI-digested (removing ID4) pMFiS expression vector [41]. In vitro mutagenesis of the *LWS* for construction of other sequences of alleles, expression, reconstitution, purification, and measurement were performed as described previously [16] with minor modifications. After Treatment reconstitution, these experiments were performed under infrared light (<900 nm) with the vision of a digital video-camera in “night shot” mode (SONY, Tokyo, Japan) or complete darkness.

Matrix correlations. We calculated the mean pairwise *LWS* sequence distance between populations as \(D_{ij} \) values (the average number of nucleotide substitutions per site between populations) using only the sites that were used for the identification of allele groups. We measured geographical distance as the shortest waterway distance between sites. We calculated the pairwise difference in water transparency and in the frequency of yellow-red or yellow males using only the sites that were used for the identification of allele groups. We tested the significance of correlations between these variables using Mantel tests [27].

Population genetic analysis. The DNA fragment including the *LWS* gene and its flanking sequence (10560 bp) was split into two putative alleles for the analysis by the program DnaSP 4.0 [42]. We performed sliding-window analysis to calculate approximate values for FST (\(D_{st} \) / \(D_{st} + D_{eu} \)), and \(k_{st} \) in 700 bp windows, sliding the window in steps of 25 bp throughout the total 10.5-kb sequences. We performed the McDonald test for heterogeneity across a region of a DNA sequence in the ratio of polymorphism to divergence [30].
Supporting Information

Figure S1. Habitat Distribution of the Four Species

The distribution of (A) P. pandaminia, (B) N. rufescuadalis, (C) M. mbipi, and (D) N. greenwoodi studied along a cline of water transparency (x-axis) and water depth (y-axis). Arrowheads indicate transects at which we sampled. Ranges of occurrence are hatched. Found at DOI: 10.1371/journal.pbio.0040433.sg001 (231 KB PDF).

Figure S2. An Alignment of All Polymorphic Sites in the LWS Sequences of N. greenwoodi and N. omnicaeruleus

The nucleotide sites and amino acid positions are shown on top and below the alignment, respectively. Dots indicate where nucleotides are identical with those in the top line. The nucleotide sites 599, 823, and 824 are highlighted. Amino acids in the row directly under the amino acid positions indicate the amino acids translated from the sequence in the top line. Amino acids in the bottom line indicate amino acids substituted from the top line. The sampling station numbers are described in Figure 1A. Found at DOI: 10.1371/journal.pbio.0040433.s002 (294 KB PDF).

Figure S3. An Alignment of All Polymorphic Sites in 55 LWS Sequences from M. mbipi

The nucleotide sites are shown on top of the alignment, n and s indicate nonsynonymous and synonymous sites, respectively. Dots indicate where nucleotides are identical with those in the top line. The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma) and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the bottom. The sampling station numbers are described in Figure 1A. Found at DOI: 10.1371/journal.pbio.0040433.s003 (52 KB PDF).

Figure S4. An Alignment of All Polymorphic Sites in 44 LWS Sequences from N. rufescuadalis

The nucleotide sites are shown on top of the alignment, n and s indicate nonsynonymous and synonymous sites, respectively. Dots indicate where nucleotides are identical with those in the top line. The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma) and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the bottom. The sampling station numbers are described in Figure 1A. Found at DOI: 10.1371/journal.pbio.0040433.s004 (50 KB PDF).

Figure S5. An Alignment of All Polymorphic Sites in 43 LWS Sequences from P. pandaminia

The nucleotide sites are shown on top of the alignment, n and s indicate nonsynonymous and synonymous sites, respectively. Dots indicate where nucleotides are identical with those in the top line. The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma) and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the bottom. The sampling station numbers are described in Figure 1A. Found at DOI: 10.1371/journal.pbio.0040433.s005 (64 KB PDF).

Figure S6. Maximum-Likelihood Tree for Alleles Studied Here, and Alleles 1–14 [19]

Maximum-likelihood analysis was performed with MOLPHY version 2.3 [44]. An NJ tree was used as the starting tree for a local rearrangement search for the ML tree with the HK85 model [45]. The scale bar indicates the number of substitutions per site. Bootstrap values are shown at the branches. An alignment of all informative sites of alleles and the frequencies (%) of each allele are shown in right panel. Dots indicate where nucleotides are identical with those in the top line. The frequency of “other” alleles is not shown. Found at DOI: 10.1371/journal.pbio.0040433.s006 (41 KB PDF).

Figure S7. Schematic Demonstration of the Position of Each Primer on the LWS Gene and Its Flanking Region

Arrows indicate the primers. The flanking sequences of the LWS gene were determined from a BAC clone. Found at DOI: 10.1371/journal.pbio.0040433.sg007 (33 KB PDF).

Figure S8. Sequences of Primers

Found at DOI: 10.1371/journal.pbio.0040433.sg008 (15 KB PDF).

Table S1. FST Values for Polymorphic Neutral Markers

Found at DOI: 10.1371/journal.pbio.0040433.s001 (81 KB PDF).

Table S2. HKA Test for the Statistical Significance (p) of Heterogeneity between Regions

Found at DOI: 10.1371/journal.pbio.0040433.s002 (34 KB PDF).

Accession Numbers

Acknowledgments

We thank Mr. Mhoko Kaveha and Mr. Mohamed Huluna for technical assistance during fieldwork of OS, HM, and NK. Mr. A. Fujimoto (Kyushu University) for help with population genetic analysis; Dr. H. Nishihara (Tokyo Institute of Technology) for help with construction of phylogenetic tree of LWS alleles; Ms. K. Sakai (Kyoto University) for technical assistance; and the Tanzania Fisheries Research Institute (Professor POJ Bwathondi, Mr. EFB Katunzi, and S. Maigahani) for research permits and hospitality. We also thank Dr. S Kawamura (Tokyo University) for pMT5 vector; Dr. RSH Liu (Hawaii University) for A2 retinal; and Dr. M Maan and Dr. MV Schneider for comments on the manuscript.

Author contributions. Y. Terai was responsible for most of the laboratory work, data analysis, designing experiments, and writing. O. Seehausen was responsible for study conception, collection of most fish samples and ecological data, identification of all fish samples, data analysis, designing experiments, and writing. T. Sasaki was responsible for the determination of LWS sequences of N. rufescuadalis. K. Takahashi contributed the collection of N. greenwoodi at Namatembii and M. mbipi at Makobe and determination of LWS sequences of N. rufescuadalis. S. Mizoiiz contributed the collection of N. greenwoodi at Namatembii and M. mbipi at Makobe. T. Sugawara provided development of the method for measurement of absorbance of reconstituted LWS pigments with Y. Terai. T. Sato assisted with collection of N. greenwoodi at Namatembii and M. mbipi at Makobe. M. Watanabe contributed the construction of a BAC library. N. Konijen directed the provision of M. mbipi at Python and Hippo islands; HDJ Mrosso performed collection of M. mbipi at Python and Hippo islands. H. Tachida supervised the population genetic analyses. H. Imai developed the method for measurement of absorbance of reconstituted LWS pigments with Y. Terai. Y. Shichida supervised measurement of absorbance of reconstituted opsins pigments. N. Okada provided study conception, supervision, and writing.

Funding. The Ministry of Education, Culture, Sports, Science and Technology of Japan (to NO), Tetra Germany and the Netherlands Foundation for the Advancement of Tropical Research (WOTRO), and the Swiss Science Foundation (to OS) supported this work.

Competing interests. The authors have declared that no competing interests exist.

References