Advertisement

< Back to Article

Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales

Figure 2

Trapline development in the initial pentagonal array of flowers.

(A) The average number of foraging bouts (mean ± s.e.m., n = 7 bees) before a bee made its first visit to each flower (F1–F5). Letters above columns indicate significant differences (GLMM, effect of flower on the number of bouts, t test: p<0.05). (B) Proportion of arrivals (a) and departures (d) made by each bee in the four quadrants (90° sectors) of the landing platform on all flower visits. (C) Proportion of transition vectors (either nest-flower, flower-flower, or flower-nest) repeated in two successive bouts in relation to the optimality ratio (straight line length of the observed visitation sequence divided by the straight line length of the shortest possible sequence to visit the same number of flowers) of the first bout. (D) Cumulative frequency of different transition vectors experienced in relation to the cumulative number of foraging bouts completed. Each bee used on average 25±1.13 different vectors (mean ± s.e.m., n = 7 bees) out of a total of 30 possible. (E) Cumulative frequency of trapline usage (the most common five-flower visitation sequence, excluding revisits, used by each bee) in relation to the cumulative number of foraging bouts completed. Traplines were first observed between bout 11 and 23, and became stabilized (used in at least three consecutive bouts at the end of training) in six bees between bouts 24 and 35. Labels 1–7 refer to the same individuals in all figures and tables.

Figure 2

doi: https://doi.org/10.1371/journal.pbio.1001392.g002