Advertisement

< Back to Article

Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales

Figure 1

Aerial view of the experimental field.

The area was structured both by landmarks providing global references (edges between different types of cut grass, lines of trees) and by local features (isolated trees). Naïve bees were pre-trained to forage on the five artificial flowers positioned in a linear array midway between location 1 and 5 (red line). In the first phase of the experiment, bees were observed foraging on the five flowers positioned in locations 1–5. The shortest possible route to visit all five flowers once and return to the nest box was 311.8 m long (blue line). In the second phase of the experiment, the flower at location 3 was removed and a new flower was established at location 6 (50 m from both location 4 and location 5). The shortest possible route in the modified array was 342.6 m (yellow line). In both spatial arrangements, the minimum distance between nearest neighbour flowers was 50 m. Open white arrow (bottom left) indicates north. White square indicates the location of the anemometer station. Black triangles represent the locations of the small generators used to power the motion detection equipment at each feeding station. GPS data (WGS 84) were recorded on an iPad (Apple, Cupertino, CA). Satellite image from Rothamsted estate, Hertfordshire, UK (http://maps.google.com). Scale is in metres.

Figure 1

doi: https://doi.org/10.1371/journal.pbio.1001392.g001