Advertisement

< Back to Article

Facilitation of AMPA Receptor Synaptic Delivery as a Molecular Mechanism for Cognitive Enhancement

Figure 5

FGL induces AMPA receptor synaptic delivery via PKC activation.

(A) Left: CA1 pyramidal neurons that express GluA1-GFP (green) on a DAPI-stained (blue) organotypic slice culture, imaged with laser-scanning confocal microscopy. Bar = 50 µm. Right: High-magnification image of GluA1-GFP-expressing neurons. Bar = 20 µm. (B) Schematic diagram that presents whole-cell recordings obtained from a neuron expressing GluA1-GFP (infected, green) and an adjacent non-fluorescent (uninfected, white) neuron. (C) AMPAR-mediated responses were recorded at −60 mV and +40 mV. The rectification index was calculated as the ratio of responses at these holding potentials. The p value was determined using the Mann-Whitney test. (D–H) FGL-induced rectification after incubation with inhibitors of different signal transduction pathways: MEK, PD98059 (D); PI3K, LY294002 (E); PKC, chelerythrine (F); classical PKC isoforms, GF109203X (G); atypical PKC isoforms (H). Sample traces are shown above the corresponding columns of the plot. N, number of cells. The p value was determined using the Mann-Whitney test. Scale bars = 15 pA and 10 ms.

Figure 5

doi: https://doi.org/10.1371/journal.pbio.1001262.g005