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Text S1 

A parsimonious model of the gene regulatory network module governing cell 

differentiation shows a wide range of continuously tunable mono-stable solutions 

when positive feedback is gradual and dominates cross-inhibition 

In this section we describe the mathematical model we use for analyzing the gene 

regulatory network (GRN) regulating the transcription factors (TFs) involved in Th1-Th2 

differentiation, T-bet and GATA3. The structure of the GRN is shown in Fig. 3A of the 

main text. In order to generate the model we have incorporated known interactions in the 

differentiation process of Th1-Th2 cells into a regulatory network diagram, similar to 

other published models of this system [2,3]. Similar models were used to study also other 

systems of binary cell fate decisions, and have shown that the steady states of the system 

exhibit bi- or tri-modality [2-7]. However, in contrast to previous studies, we identify a 

novel regime where a mono-stable solution exists. This holds when the positive 

autoregulatory loops for each of the TFs is gradual, giving rise to a wide dynamic range. 

In the model this translates to a low hill coefficient (of the order of 1) for each of the 

positive feedback autoregulatory loops. 

The model assumes the following known interactions – T-bet (denoted as x) and GATA3 

(denoted as y) each driving their own expression, creating a positive feedback loop while 

inhibiting the expression of the counterpart TF. These interactions are effective 

interactions and might represent an indirect sequence of interactions. The dynamic 

equations describing this model are given by: 
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Where       are the concentrations at which half activity is attained for the positive 

feedback of x and y respectively. Similarly,       are the concentrations at which half 

inhibition is attained for the negative cross-inhibition of x on y and y on x respectively. 

The factor   is the ratio between the two degradation rates. We assumed a general hill 

function effect for all reactions of positive and negative kind.  

The input signals driving the system are represented by the effective production rates of 

each of the TFs,    and   . Experimentally these rates can vary by exposing cells to 

different levels of the external cytokines, IL-12 and IL-4, respectively. Without loss of 

generality, the rates were normalized in such a way that the degradation rate was set to 

equal one, note that this assumption does not change the structure of the phase space and 

can be relaxed. 
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We start by analyzing the case of no cooperativity, where all reactions are of the 

Michaelis-Menten form, m=n=p=q=1. Solving the model for the steady-state solutions 

one finds at most four fixed points: 
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where  ̂  ̂ are the solutions of the quadratic equation 
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The four solutions represents the OFF state (Eq. 3), where no TF is expressed, the two 

fully polarized solution (Eqs. 4-5) where only one TF is expressed while the other is 

inhibited, and the novel mixed state (Eq. 6) where both TF are expressed simultaneously. 

The stability of the different fixed points is set by the ratios  ̃  
  

  
  ̃  

  

  
 (i.e. the 

relative strengths of negative vs. positive feedback for each TF) and depends also on the 

values of the two inputs,    and   . Systematic analysis of the parameter phase space 

reveals several regimes with different stability patterns. In general we find four different 

such regimes (Fig. 3, Fig. S13). The two extreme regimes (I and II), where one signal is 

much stronger than the other give rise to a single stable fixed point describing either Th1 

(for      , regime I) or Th2 (for      , regime II).  In the intermediate regimes (III 

and IV), where the signals are similar, we find two different behaviors: bimodality or a 

monostable mixed state. In the first, both polarized states (Eqs. 4 and 5) are stable 

simultaneously (regime III), while in the second, the only fixed point is the mixed state 

(Eq. 6) (regime IV). As we vary    and   , the point of separation between the bi-stable 

region and the mono-stable mixed state moves along a hyperbola on the  ̃   ̃  space. 

Its location is given by the following relation 
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For example, when       the point of separation between the two regions lies at 

  ̃   ̃        . This situation is shown in Fig. 3B. 

The phase space can be probed by exposing cells to different external conditions, thereby 

changing    and   . By gradually moving from Th1 supporting conditions (regime I) to 

Th2 supporting conditions (regime II) the system must go through one of the transition 

regimes in which it exhibits either bi-stability or a mixed-phenotype behavior. As varying 

the   s doesn’t change the feedback parameters, the system either lies above the 
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hyperbola described in equation 8, or below it. As this is the separating point between the 

two transition regimes the expected behavior would depend on parameters of the 

feedback alone. Therefore by measuring the behavior for a set of initial conditions 

interpolating between Th1 conditions and Th2 conditions we will always see the same 

behavior for a given system. Varying input signals cannot change a bi-stable system into 

a mixed phenotype one and vice versa. Note that when       , there is a region of 

parameters where equation 6 has two solutions. This gives rise to a new regime with bi-

stability where one of the solutions is polarized while the other exhibits mixed TF 

expression. As this region is not extended and covers a relatively very small area of the 

phase space  (being at most 10% of the above mentioned bi-stable region with a median 

of 1% for        ratio  ranging between 1 to 5) it requires a fine tuning of the external 

signals in order to pass through this regime. This is in contrast to the previously 

mentioned regimes, which any path connecting the two polarizing conditions must cross. 

Further numerical analysis shows that increasing the hill coefficients of the negative 

cross-inhibition links (q and p in Eq. 1 and 2, respectively) does not change these results 

significantly, but rather increases the phase space range where a mono-stable solution is 

attained. This can be understood intuitively since increasing the negative feedback shifts 

the inhibitory response towards a step function, thus yielding a larger regime where the 

mutual inhibitory influence is weak thus allowing the two TF concentrations to build up 

to a non-zero value. Thus, increasing the hill coefficient of the negative cross-inhibition 

links does not change qualitatively the phase-space of mono-stability vs. bi-stability.  

Next, we examine the case where the positive autoregulatory feedback is greater 

than one. In this case, as shown previously by a number of studies [2-7], the dynamic 

behavior is mostly bi-stable by nature, as can be seen from analyzing the Jacobian of the 

system:  
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One can see that the point (0,0) is always a stable fixed point of the system. Furthermore, 

the two polarized fixed-points points    
     and      

   can be stable together given that 

the parameters hold  

(10) 
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Therefore, in the case of higher hill coefficients for the positive feedback loop (    

 ), there is a wide range of parameters such that the two fully polarized fixed points are 

both stable, leading to a large regime of bi-stability (which stands in contrast to the case 

of the positive feedback loops having hill coefficients equal 1, as shown above).  
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