
Supplementary Theory

The qualitative behaviour of HSCs derived from the JAK2 V617F knock-in mice in trans-
plantation assays suggests that their long-term self-renewal capacity is diminished in com-
parison to their WT counterparts. At the same time, when the size and relative contribution
of different cell types of colonies derived from JAK2 mutant cells is compared to WT after
10 days post-plating, the differences seem relatively modest given the scale of the expansion.
We asked whether the quantitative analysis of the colony data could provide insight into the
fate characteristics and proliferative potential of these two HSC populations. By combining a
quantitative analysis of short-term colony size data with the longer-term fate characteristics,
we will provide additional support to the qualitative conclusions drawn from the results of
the transplantation assay. In the following, we will outline the basis and limitations of this
simplified modeling scheme.

1 Growth kinetics from the colony assay

When cultured in 96 well plates, CD45+EPCR+CD48-CD150+ cells enriched for HSCs in
both WT and the JAK2 mutant divide and expand to form colonies of variable size and cell
composition over the 10 day timecourse. While details of the cell composition of individual
colonies could only be scored reliably by the 10 day timepoint, the size of colonies could
be traced over the whole timecourse from the earliest timepoint (Figures S1,2). Analysis
of the average size of the statistical ensemble of colonies, shown in Figure 5A, reveals a
steady, geometric (i.e. exponential), expansion of both WT and JAK2 colonies over the first
few rounds of division, following a short “activation” period after plating (Figures S1 and
S2). During this early phase of growth, we estimate a cell doubling rate for WT cells of ap-
proximately once per day, with an activation period of around a day. For the JAK2 mutants,
the cell doubling rate appears slightly faster, but still comparable to WT, with an activation
period of a little longer at around 1.5 days. However, the small degree of variability of the
activation time between different experiments (data not shown) suggest that the difference
between WT and JAK2 mutant cells is not statistically significant. This geometric expansion
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persists at a constant rate for some 3-5 rounds of division after which the data show a signif-
icant and relatively abrupt increase in the average cell division rate over 5-6 further rounds
of division. At later timepoints, the average clone size increases less rapidly as cells begin to
commit to terminal differentiation.

To gain further insight into the differentiation pathways, and pattern of cell fate choice,
we can make use of the longer-term 10 day data, where the individual colony composition
can be assessed according to expression of markers of the undifferentiated cell compartment
(viz. KSL expression), progenitor cell compartment (Lin−/non KSL), and differentiated cells
(Lin+). From the raw data, several qualitative features emerge. Referring to Figures S3A,B,
we can find WT colonies with as many as 40k cells, while other colonies contain fewer
than 1k, a separation of some 5 generations of cell division. If we suppose that such large
colonies arise from geometric expansion, we are led to conclude that cells have undergone
as many as ln 14, 000/ ln 2 � 15 rounds of division. Even if we take the average colony
size of 9k cells, we estimate that cells have undergone some 13 rounds of division over the
10 day timecourse. With the measured activation period from the short-term dynamics, this
translates to an average cell division rate of ca. 13/9 = 1.4 per day over the measured
timecourse. Moreover, since the early undifferentiated progeny cycle at a lower rate, we can
conclude that cells further along the differentiation pathway must cycle at a rate that is in
excess of this figure, as indeed suggested by the average colony growth (Figure 5A).

From these findings, several important conclusions follow. The persistent geometric in-
crease in colony size shows that, at least up until day 10, relatively few cells have exited
cell cycle. This observation is consistent with the limited expression of lineage markers in
colonies at day 10. Since the majority of cells have undergone some 13 rounds of division,
this suggests that, either the differentiation cascade has a very large number of compartments,
or the progenitors in the cascade retain a significant self-renewal potential which inhibits the
progression of cells through the hierarchy. The latter scenario is supported by the relative
distribution of different cell types which appears broad at day 10 (Figures S3A,B). To make
further progress it is useful to turn to a more quantitative analysis of the colony data.

2 Modeling the differentiation cascade of HSCs in culture

To analyze the clone fate measurements, our strategy will be to develop the simplest mod-
eling scheme that is consistent with the data. However, our goal is not to define in detail
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every element of the differentiation heirarchy. Rather, we aim to use the model to assess the
approximate self-renewal potential of HSCs and their differentiating progeny, and to use this
information to develop further experimental assays to challenge the model.

To develop this program, we will assume that HSCs in both the WT and the JAK2 mu-
tant represent functionally homogeneous populations in which their respective proliferative
and differentiation capacity are statistically equivalent, i.e. the colony forming capacity and
lineage potential of individual HSCs is determined simply by chance fate decisions. Support
for this central assumption will be provided through the success of the scheme in describing
the range and complexity of the clonal fate behaviors. Second, we will suppose that HSCs
and their differentiating progeny are organized in a unidirectional hierarchy. We refer to
cells at the apex of the hierarchy as type S∗ (for stem cell). Cells lower in the hierarchy but
still belonging to the KSL population will be denoted as type S (reflecting a degree of stem
cell potential), cells negative for lineage marker expression but not in the KSL population
are denoted as type P (for progenitor cell), and cells positive for lineage markers by D (for
differentiated). Of course, in the biological system, commitment may not be irreversible
and cells may transfer reversibly between different cell compartments. However, provided
the frequency of such events is small, they can be safely neglected in the current modeling
scheme.

In previous studies and this work, evidence from serial transplantation assays have shown
that WT cells at the apex of the cellular hierarchy, S∗, form a self-renewing population,
even under culture conditions. At the same time, we know that the transplantation efficiency
of single-HSC derived colonies tends to diminish over time, with approximately 30% of
colonies able to engraft irradiated transplantation recepients long-term after 4 days in culture.
The ability to combine long-term self-renewal capacity with differentiation suggests that,
under culture conditions, HSCs follow a pattern of balanced stochastic cell fate characterized
by the process,

S∗ λ�→






S∗ + S∗ Pr. r

S∗ + S1 Pr. 1− 2r

S1 + S1 Pr. r

.

Here λ denotes the cell division rate, and the parameter r controls the balance between sym-
metric and asymmetric cell division. More precisely, following cell division, with probability
1−2r, the daughters adopt asymmetric fate with one cell remaining in the HSC compartment,
S∗, and other moving to the first generation of cells that are committed to a differentiation
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pathway, denoted as S1. Then, with probability r, cells either undergo symmetric duplica-
tion, or symmetric differentiation,

If we focus on the HSC population alone then, by construction of the model, the total
number of HSCs in a large colony assay will remain approximately constant over time, but
they will become increasingly invested in a diminishing fraction of surviving colonies, i.e.
according to this stochastic dynamics, the HSC content of the colonies would be predicted
to follow a “neutral drift” type process. Such behaviour is not unprecedented: a similar
pattern of behaviour has been reported in keratinocyte progenitors both in vivo and under
culture conditions (Clayton et al., 2007). Indeed, if we take into account the transplantation
efficiency of the 4 day colony data together with the inferred HSC division rate, we would
conclude that the parameter r is large and close to its maximum value of 1/2. For simplicity,
in the following, we will set r = 1/2, after which the dynamics takes the somewhat simpler
form,

S∗ λ�→
�

S∗ + S∗ Pr. 1/2

S1 + S1 Pr. 1/2
.

As cells progressively differentiate, we will suppose that they move through a cascade in
which the intermediate tiers retain some self-renewal potential. Once again, for simplicity,
we will characterize the cell fate kinetics by limiting attention to symmetrical fate outcome
leading to duplication or differentiation further down the hierarchy, neglecting the potential
for asymmetrical fate outcome. More precisely, we will suppose that differentiating cells in
the KSL compartment are defined by the hierarchy,

Sn
λn�→

�
Sn + Sn Pr. 1/2−∆n

Sn+1 + Sn+1 Pr. 1/2 +∆n

,

where Sn represent cells expressing KSL markers in generation n of the hierarchy, λn denotes
the corresponding cell division rate, and ∆n controls the degree of bias towards differenti-
ation. Cells of type Sn=1 are generated through the differentiation of HSCs, which in turn
give rise to cells of type Sn=2, and so on. In the particular case that all cell divisions lead to
differentiation, i.e. ∆n = 1/2, the model coincides with that recently considered by Haeno
et al. (Haeno et al., 2009).

After several rounds of amplification, we suppose that cells in generation M , SM , give
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rise to progenitors in which the expression of c-Kit and Sca1 is down-regulated,

SM
λM�→

�
SM + SM Pr. 1/2−∆M

P1 + P1 Pr. 1/2 +∆M

.

Once again, we will assume that the Lin−/non KSL progenitor cell compartment is organised
in a short hierarchy with component cells retaining a degree of self-renewal potential, setting

Pn
κn�→

�
Pn + Pn Pr. 1/2− δn

Pn+1 + Pn+1 Pr. 1/2 + δn
,

where κn represent the corresponding cell division rates and δn the potential degree of im-
balance. Then, after N tiers of amplification, we suppose that this compartment commits to
terminal differentiation, upregulating expression of lineage markers,

PN
κN�→

�
PN + PN Pr. 1/2− δN

D+D Pr. 1/2 + δN
.

Finally, in response to culture conditions, we suppose that Lin+ cells undergo cell death
at rate Γ. At the same time, we suppose that cell death in the proliferative cell compart-
ments makes a minimal contribution and can, therefore, be neglected. Altogether, the model
dynamics is summarized by the schematic in Figure 5B.

Even with this level of complexity, one may be reasonably concerned that this model
represents a gross oversimplification of the true cell dynamics. As well as neglecting the
potential for asymmetrical fate outcome or reversible transfer through the hierarchy, the
model further assumes that differentiation occurs in a sequence of step-like processes be-
tween neighbouring tiers in the hierarchy. Further, at each level of the hierarchy, the model
assumes that cells in each tier behave as an equipotent pool, with their fate characteristics not
influenced by local factors from the environment or signals from neighboring cells. How-
ever, as mentioned before, our aim here is not to develop a detailed biophysical modeling
scheme – with so many adjustable parameters, such an enterprise would, in any case, be
misguided. Rather, our goal is to establish whether the principle aspects of the cell fate
choice and kinetics can be captured by a simple modeling scheme that can discriminate the
behavior of WT and JAK2 mutant cells, and can be challenged by further experimental mea-
sures. Therefore, instead of introducing further detailed refinements of the model, we will
implement additional simplifications to constrain the modeling scheme still further.
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In the following, we will begin by focusing on WT cells turning later to address the in
vitro behavior of the JAK2 mutant HSCs. For WT cells, we will begin by supposing that,
in common with the HSCs, the self-renewal capacity of cells in each tier of the hierarchy is
perfectly balanced, setting ∆n = δn ≡ ∆ = 0. Later we will challenge the validity of this
assumption by optimizing the fit of the data to changing imbalance. In this approximation,
let us consider the predicted dynamics of the constituent populations. If we assume that
the times between consecutive HSC divisions are random and uncorrelated, drawn from an
exponential (i.e. Poisson) distribution with an average division rate λ, at the population level,
the average number of HSCs (per colony) stays fixed at nS = 1, while the average number
of S1 cells is specified by the kinetic equation ṅS0 = λnS, i.e. at rate λ, HSCs give rise to
one S1 cell on average. Integrating, we therefore have that nS1(t) = λt, where t denotes the
time post-plating. Once again, although the average is predicted to grow linearly with time,
by the nature of the stochastic dynamics, S1 type cells will not be evenly distributed between
different colonies.

At the next tier in the hierarchy, we have ṅS2 = λ1nS1 , leading to the average nS2(t) =
1
2(λt)(λ1t). Iterating this procedure, we thus obtain as the total average number of cells
in the KSL compartment, nKSL = 1 +

�M
n=1

1
n!

�n−1
m=0(λmt), with λ0 ≡ λ. Indeed, if M

were infinite, and λm all equal, this would sum to an exponential, as expected for a purely
geometric branching-type process. In practice, with the KSL compartment terminated at
a fixed generation M , the geometric nature of the expansion means that the sum will be
effectively dominated by this outermost tier.

From the experimental data, we find that, at 10 days post-plating, the average colony
size for WT HSCs is around 11k cells (Figure 5A). Since the vast majority of these cells
are still in cycle, we can use this figure to obtain an estimate of the average number of
rounds of division assuming that division follows a Poisson (as opposed to synchronous)
process, i.e. nrounds � ln(11, 000) � 9. Then, if we assume that the division rate at the
latter stages of the hierarchy are roughly constant, as implied by the geometric pattern of
growth at later times (Figure 5A), and set by λM , we can estimate the size of the KSL
population as approximately

�M
n=0(λN t)n/n!. When compared to the measured average of

nKSL � 4k cells per colony, for λM t � nround, this equates to M � 7. This means that,
immediately below the HSCs, KSLs involve some 7 layers in the hierarchy. Similarly, if we
focus on the progenitor cell compartment, following a similar line of reasoning, from the
measured Lin−/non-KSL average of 6.5k cells, we estimate approximately N = 2 rounds in
its hierarchy.
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Finally, to complete the specification of the model dynamics, we must define the relative
rates of cell division for the different compartments. From the short-term data, it is evident
that the first 5-6 rounds of division occur at a constant and slower rate than the subseuqent
rounds of division. After that, the division rate is approximately doubled. We will therefore
set λn≤5 = λ, while λn>5 = κn = κ ∼ 2λ.

3 Numerical simulation

3.1 WT HSC-derived colonies

Although the model dynamics of the HSCs and their progeny is comparatively straightfor-
ward, defined by just the two division rates, λ and κ, and loss rate Γ, the time-evolution
of the size distribution cannot be obtained analytically. Moreover, with so many elements in
the hierarchy, even a numerical integration of the corresponding Master equation for the joint
probability distribution seems unfeasible. However, the model is straightforward to simulate
computationally. It is the results of these numerical simulations that we use to fit and analyze
the range of experimental data.

Alongside the 10 day timecourse recording the average growth dependence of the colonies,
to properly challenge the model, it is important to explore the detailed size distribution of
cell types at the 10 day timepoint. Since the FACS measurements could only be reliably
completed on colonies in excess of 500 cells, the analysis of the 10 day timepoint is focused
on colonies in excess of this size. To fit the data, we adjust the three parameters, λ, κ and Γ

to match the growth of the average colony size over the 10 days timecourse (Figure 5A), us-
ing the measured time-offset of one day associated with the activation of cells (Figure S1A).
With these three parameters fixed, we then examine whether the model yields the correct
form of the size distributions, disaggregated by cell type (Figure S3B).

In carrying out the fitting procedure, we note that the overall cell division rate of the most
undifferentiated cells, λ, is heavily constrained by the timecourse data. With κ � 2λ also
constrained, only the loss rate Γ can be freely adjusted to fit the data. Implementing this
program for WT cells, we obtain the best fit of the model to the measured growth dynamics
over the 10 day timecourse for λ = 0.95 ± 0.05 per day, κ = 1.64 ± 0.05 per day, and
Γ = 1.8± 0.1 per day (Figure 5A). Then, with these values of the parameters, the measured
cumulative clone size distribution, defined as the chance of finding a clone with more than n
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cells of the given type, as assayed by marker expression at 10 days post-plating, shows the
same characteristic broad (exponential-like) distribution, with the correct partitioning of the
relative populations (Figures 5C,D).

Although, when referred to the joint scatter of individual colony sizes, disaggregated by
cell type (Figure S4A), the overall pattern of behavior of experiment and numerical sim-
ulation is similar, with entries showing a reasonable overlap, the data from the simplified
theoretical model appear slightly more clustered than the experimental cohort, particularly
in the correlation between the total colony size (termed viable), and the differentiated (Lin+)
cell population as well as the correlation between the KSL cells and the Lin−/non-KSL cells.
Indeed, the former may simply reflect the limitations of the “linear” hierarchy that does not
allow cells to exit cell cycle from less differentiated cell types. Equally, it may be a signature
of variability in the survival probability of different Lin+ cells, features that lie outside the
scope of the simplified modeling scheme considered here.

Before turning to the behaviour of the JAK2 mutant cells, we must first address the quality
of the fits and the validity of the modeling scheme. In particular, the analysis of the data
relied upon the somewhat extreme assumption that all tiers of the hierarchy had the same –
perfect – self-renewal potential. What happens if we allow progenitor cells to become biased
towards differentiation? Once again, taking the imbalance to be the same for all tiers in the
hierarchy, ∆n = δn ≡ ∆, if we set ∆ = 1/2, consistent with the model considered by Haeno
et al. (Haeno et al. 2009), we can find no range or parameters (at least within the scope
of this very simplified modeling scheme) that can be made consistent with the experimental
data. In short, to engineer conditions with consistent numbers of KSL cells, vast numbers
of cells must have progressed down the differentiation pathway leading to unreasonably
large numbers of Lin−/non-KSL and Lin+ cells. But what happens if we adjust ∆ to some
intermediate value?

To assess the quality of the fit, we must introduce a means to quantify errors. In refer-
ence to the clone size distributions at 10 days post-plating, the main source of experimental
uncertainty is associated with small number statistics. For the WT HSCs, the cumulative
clonal size data in Figure 5C is derived from some 68 colonies. The statistics of the largest
clone sizes (top 5%) will therefore be dominated by just a few rare events, where the sim-
plest regression-type analysis is questionable. Therefore, to properly assess the statistical
significance of the analysis, we have used the modelling scheme itself to estimate the ex-
pected range of experimental variability. More precisely, we have used the model to recover
the expected statistical variation in the cumulative clone size distributions by examining at
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the results of multiple simulations (1000 trials) each involving a cohort of 68 colonies (in the
case of WT cells). We have then represented the expected range of variability by the standard
deviation in the numerical results for each data point. When the data can be accommodated
within the first standard deviation, we have declared the fit to be satisfactory while, when the
data lies outside one standard deviation for some or all of the data points, we consider the
agreement poor.

On this basis, the agreement between the balanced model (with ∆ = 0) and experiment
is good (Figure 5C,D). However, Referring to Figure 5E, even for a relatively small bias
towards differentiation with ∆ = 0.1, the optimal fit of the model to the colony growth
curve (with λ = 0.97 per day, κ = 1.65 per day, and Γ = 1.8 per day) translates to a
relatively poor agreement of the cumulative clone size distributions for the different cell
types. In particular, although we can tune the overall average number of viable cells and, to
some extent, the distribution to approximately the correct form at 10 days post-plating, the
distribution of KSL cells is poorly reproduced. As expected, the tilt towards differentiation
allows these cells to rapidly escape the KSL pool and enter the differentiating phase. We
therefore contend that, within the scope of the present simplified modeling scheme – with
all of its stated limitations – a model of perfect self-renewal provides a better match to the
range of experimental data.

3.2 JAK2 mutant HSC-derived colonies

With this background, we now turn to the study of the JAK2 mutant. First, although at 10
days post-plating, the WT and JAK2 mutant cells show significant differences in the average
colony size and composition (Figure 2), analysis of the joint distribution of cell types (Figure
S3A) and the cumulative clone size distribution (Figure S3B) show that these differences are
relatively subtle. In both cases, the data show a broad distribution of colony sizes with
significant overlaps between the WT and JAK2 colonies (Figure S3A). However, when these
datasets are projected onto the cumulative distributions, it is apparent that the JAK2 data is
tilted towards larger colonies with more differentiated cells (Figure S3B).

To what extend can the model account for the behavior of the JAK2 mutant HSCs? In-
triguingly, if we try to make use of the WT model to fit the experimental data for the JAK2
mutant cells, it is not possible to find a range of parameters, λ, κ and Γ, in which we can ac-
curately reproduce the correct cell type averages at the 10 day timepoint. In particular, with

9



balanced probabilities for all proliferative cell types, ∆ = 0, the optimal fit of the model to
the measured colony growth curve (Figure 5B) translates to a division rates λ = 0.95 per day
and κ = 2 per day, a loss rate Γ = 1.8 per day, and a time offset increased from 1 day in WT
to 1.5 days. With these parameters, a comparison of the cumulative clone size distribution
with the experimental data shows a relative poor agreement. In particular, while the fre-
quency of early undifferentiated cells (KSL and Lin-/non-KSL cells) is relatively good, lying
within one standard deviation of the predicted model average distribution for 125 colonies,
the cumulative distribution of viable cells is poorly recovered with the model showing a
greater spread of colony sizes than the experimental data (Figure 5G). Therefore, to seek a
better model for the JAK2 mutant, we will look for a minimal modification of the inferred
dynamics of the WT system.

Inspired by the results of the serial transplantation assay, and the apparent tilt of the
colony data towards differentiation, let us then suppose that cells at the apex of the hierarchy
are now biased towards differentiation. For simplicity, let us begin by considering a 100%
bias (i.e. ∆ = 1/2) for HSCs alone implying that, on division, the HSC immediately moves
down the differentiation pathway. For cells lower in the hierarchy, we will assume that the
fate behavior is equivalent to that of WT cells, with each generation perfectly balanced in
its self-renewal potential, i.e. for these cells, the imbalance, ∆n = δn ≡ ∆ = 0. Once
again, adjusting the three parameters, we obtain the best fit of the model to the average total
colony size over the timecourse (Figure 5A) and the average colony size by cell type at 10
days post-plating for λ = 1.02 ± 0.05 per day, κ = 1.83 ± 0.1 per day, and the same loss
rate as WT, Γ = 1.8 per day. Crucially, for the same set of parameters, we obtain a much
better agreement with the cumulative clone size distribution (Figure 5F,H), while the overlap
of the joint colony size scatter is similar to that found for WT cells (Figure S4B). Therefore,
in addition to the differentiation bias of the HSCs, these results suggest that the division rate
of the JAK2 mutant cells is increased marginally over that of WT. Once again, if we allow
a bias to develop in all of the differentiating cells, we find that the agreement of theory with
the data is significantly compromised (data not shown).

Although this analysis indicates that the complete loss of self-renewal potential of the
JAK2 mutant HSCs provides a better fit to the data than perfect balance, we must now address
whether a partial bias of the HSCs towards differentiation may also be compatible with the
experimental data. Indeed, if we fit the growth dynamics to a model with a 90% bias of HSCs
towards differentiation (i.e. ∆ = 0.4), keeping the cells lower in the hierarchy balanced, the
model provides an equally good fit to the cumulative size distributions with λ = 1.00 per
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day, κ = 1.86 per day, and Γ = 1.8 per day (Figure S5A). By contrast, if we consider a 70%
bias (∆ = 0.2), with λ = 0.98 per day, κ = 1.93 per day, and Γ = 1.8 per day, the agreement
is qualitatively less good (Figure S5B).

In summary, these simplified models suggest that JAK2 mutation compromises the sur-
vival potential of cells at the top of the stem cell hierarchy biasing them towards differenti-
ation. Although this analysis is not sufficiently robust to rule out an additional bias towards
differentiation in other generations near the top of the hierarchy, as with WT, the majority of
cells lower in the hierarchy must retain a substantial degree of self-renewal potential to be
consistent with the experimental data.

4 Ageing

Lastly, we turn to the question of ageing on the properties of the HSC compartment in the
culture assay. In both the WT and JAK2 mutant, the data suggest that the population of
all cell types is diminished slightly at the 10 day timepoint. At the same time, the 10 day
timecourse shows that the entry of the HSCs into cycle is delayed slightly. This raises the
question of whether the reduction in colony size represents a functional deficiency of these
cells or is just a reflection of an increased activation period.

When compared to the colony data from young mice, the overlap of the cell type data
from old mice (Figure S6A) shows that the pattern of cell growth and differentiation in WT
cells is indeed similar. More significantly, if we suppose that HSCs from old mice incur a
further 0.5 day delay in becoming activated – consistent with measurements of the 10 day
timecourse (data not show) – the size distribution of the different cell types shows good
agreement with the model prediction using the same division and loss rates (Figure S6B).
An inspection of the data for JAK2 mutant HSCs leads to a very similar conclusion (data not
shown).
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Clayton E., Doupé D.P., Klein A.M., Winton D.J., Simons B.D., and Jones P.H. (2007). A
single type of progenitor cell maintains normal epidermis. Nature 446, 185-189.

Haeno H., Levine R.L., Gilliland D.G., and Michor F. (2009). A progenitor cell origin of
myeloid malignancies. Proc. Natl. Acad. Sci. USA 106, 16616-16621.

11


