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Génétique, Centre Hospitalier Universitaire Bretonneau, Tours, France, 88 GEMO Study (Genetics Network ‘‘Groupe Génétique et Cancer’’), Fédération Nationale des

Centres de Lutte Contre le Cancer, France, 89 Queensland Institute of Medical Research, Brisbane, Australia, 90 The Kathleen Cuningham Foundation Consortium for

Research into Familial Breast Cancer, Peter MacCallum Cancer Institute, East Melbourne, Australia, 91 Center for Cancer Systems Biology (CCSB) and Department of Cancer

Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 92 Department of Internal

Medicine, Epidemiology, Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America, 93 Department of Obstetrics and Gynaecologie,

Heinrich-Heine-University, Duesseldorf, Germany

Abstract

Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast
carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased
risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and
differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we
depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may
increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified
common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast
cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio (wHR) = 1.09 (95% CI
1.02–1.16), ptrend = 0.017; and n = 3,965, wHR = 1.04 (95% CI 0.94–1.16), ptrend = 0.43; respectively. Subsequently, studies of
MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential
reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is
regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into
apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor
type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of
HMMR/RHAMM.
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Introduction

The mammary gland is composed of two epithelial cell lineages

that form an inner apicobasal-polarized luminal layer surrounded

by an outer, or basal, layer of contractile myoepithelial cells [1].

Epithelial cell subsets are likely maintained through a differenti-

ation hierarchy supported by an estrogen receptor (ER)-negative

mammary stem cell population enriched at the basal compartment

[2–7]. Cytoskeletal structures, including actin and intermediate

filament content, identify differentiated cells [8] and may therefore

contribute to differentiation. For example, the organization of

microtubules at adherens junctions is essential for the maintenance

of cell-to-cell contacts in apicobasal-polarized epithelial [9]. This

involves centrosome-dependent microtubule assembly followed by

release and capture at non-centrosome sites [10]. Therefore,

dynamic cytoskeletal reorganization may be critical to the terminal

differentiation of breast luminal epithelium. However, the

molecular determinants of this process and the link with

carcinogenesis remain unknown.

The common pathological features of breast tumors arising in

breast cancer 1, early onset (BRCA1) gene mutation carriers,

including the basal-like phenotype and ER negativity [11,12],

led to the proposition that BRCA1 function regulates stem/

progenitor cell proliferation and differentiation [13]. Recent

evidence supports this hypothesis. Cell proliferation and

differentiation are altered with BRCA1 depletion in the non-

tumorigenic MCF10A breast cell line [14] and with ex vivo

culture of primary mammary epithelial cells from BRCA1

mutation carriers [15]. Xenografts of primary mammary

epithelial cells depleted of BRCA1 show expansion of stem cells

with impaired luminal differentiation [16]. Expanded luminal

progenitor populations have also been detected in breast tissue

from BRCA1 mutation carriers [17] and, subsequently, proposed

as the target of transformation leading to basal-like tumors [18].

A more recent study has shown expanded basal progenitor cells

but also defects in luminal progenitor differentiation in these

carriers [19]. While it has been postulated that stem/progenitor

cells may have stringent requirements for high-fidelity DNA

damage repair [17], the potential contribution of BRCA1 to

other molecular events fundamental in differentiation remains to

be elucidated.

BRCA1-dependent ubiquitination, functioning as a heterodi-

mer with BRCA1-associated RING domain 1 (BARD1), down-

regulates assembly of centrosome microtubules in a mammary-

specific manner [20,21]. Xenopus brca1-bard1 attenuates the

function of a microtubule-associated protein called Xenopus

receptor for hyaluronan-mediated motility (xrhamm) [22].

Xrhamm is the ortholog of a candidate low-penetrance breast

cancer susceptibility gene product (RHAMM, HMMR gene) [23]

whose over-expression in tumors is associated with poor

prognosis and early age at diagnosis [23–25]. While xrhamm

regulates microtubule organization during meiosis [26],

RHAMM controls c-tubulin (TUBG1) recruitment [27] and

interphase microtubule dynamics [28]. Together, these observa-

tions suggest that BRCA1 might be involved in epithelial

differentiation by down-regulating centrosome microtubule

assembly, through RHAMM and TUBG1, and promoting the

cytoskeletal reorganization necessary for apicobasal polarization.

Conversely, loss of BRCA1 function might impair structural cues

of terminal differentiation and, consequently, increase risk of

breast cancer characterized by the basal-like tumor type. Here,

we conduct complementary analyses to demonstrate genetic,

molecular, and functional interactions between BRCA1/BRCA1,

HMMR/RHAMM, and additional centrosome components that

orchestrate cytoskeletal reorganization critical for epithelial

apicobasal polarization. These new insights may enhance our

understanding of mammary epithelial differentiation and the link

with breast carcinogenesis.

BRCA1-RHAMM and Breast Carcinogenesis
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Results

Common Genetic Variation in HMMR Modifies Breast
Cancer Risk among BRCA1 Mutation Carriers

Although BRCA1 and BRCA2 function coordinately during

DNA damage response, genomic, transcriptomic, molecular, and

pathological features of breast tumors arising in BRCA1 and

BRCA2 mutation carriers suggest that carcinogenesis may occur

through perturbation of shared and distinct biological processes

[13,29]. Previous analysis of candidate genomic regions using a

linkage approach suggested specific modification of breast cancer

risk among BRCA1 mutation carriers by common genetic variation

at chromosome 5q33-34 [30]. Extension of this study supports the

original conclusion: a haplotype analysis in 27 families with

BRCA1 mutations revealed a nonparametric linkage score peak of

4.24 at the 5q34 region containing HMMR (Table S1); in contrast,

no evidence of linkage was observed among 16 families with

BRCA2 mutations (only a suggestive signal at 20 centiMorgans

distal of HMMR was detected, D5S408 nonparametric linkage

score = 1.91).

Common breast cancer-predisposition alleles may differentially

modify breast cancer risk among BRCA1 and BRCA2 mutation

carriers [31–33]. To complement the linkage approach, we

evaluated the effect of common HMMR genetic variation [23]

on breast cancer risk in BRCA1 and BRCA2 mutation carriers.

Following a pilot study in Italy and Spain, analysis of carriers

(n = 11,609) collected through 24 study groups participating in the

Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

detected significant modification of breast cancer risk by HMMR

rs299290 variant among BRCA1, but not BRCA2, mutation

carriers: BRCA1 mutation carriers n = 7,584, Cox proportional-

hazards regression model, hazard ratio (HR) = 1.08 (95%

confidence interval (CI) 1.02–1.13), ptrend = 0.004 (p2df = 0.014), in

the same direction as originally detected in Ashkenazi Jewish

populations [23]; BRCA2 mutation carriers n = 3,965, HR = 1.03

(95% CI 0.96–1.10), ptrend = 0.42 (p2df = 0.67). For BRCA1 mutation

carriers, consistent effects were observed across centers with larger

sample sizes (Figure 1).

We performed a number of sensitivity analyses to investigate the

robustness of our results. First, since prophylactic oophorectomy

reduces the risk of breast cancer in BRCA1 mutation carriers by up

to 50% [34], we included this observation as a time-dependent

covariate in the analysis, and a significant association similar to the

one shown above was revealed: HR = 1.09 (95% CI 1.03–1.16),

ptrend = 4.561024. Second, a non-significant association, but in the

same direction, was identified when prevalent cases (defined as

those diagnosed with breast cancer more than five years before

recruitment) were excluded from the analysis: HR = 1.06 (95% CI

0.99–1.15), ptrend = 0.10. Finally, to investigate whether the

retrospective study design and the non-random sampling of

affected and unaffected mutation carriers introduce bias into the

HR estimates, the data were also analyzed using a weighted cohort

approach [35], which yielded similar results to those shown above:

BRCA1 mutation carriers wHR = 1.09 (95% CI 1.02–1.16),

ptrend = 0.017 (p2df = 0.041) (wHR per study centre are detailed in

Table S2); BRCA2 mutation carriers wHR = 1.04 (95% CI 0.94–

1.16), ptrend = 0.43 (p2df = 0.68). Examination of heterogeneity in

risk estimates across groups did not show significant differences

under the multiplicative model (phet$0.3). The association was

then evaluated according to the predicted functional consequences

of BRCA1 mutation type [36–40]. This analysis suggested an effect

in carriers of loss-of-function mutations expected to result in a

reduced transcript or protein level due to nonsense-mediated RNA

decay (n = 4,636, wHR = 1.08 (95% CI 0.99–1.19)), whereas

carriers of mutations likely to generate stable proteins with

potential residual or dominant negative function might not be

influenced (n = 1,380, wHR = 1.00 (95% CI 0.85–1.18)). While

studies have identified low-penetrance alleles that associate with

breast cancer risk in carriers of BRCA1 mutations and carriers of

BRCA2 mutations [32,33], specificities have also been detected

[31,33,40]. Here, the results of linkage and association studies

support a potential, specific genetic interaction between BRCA1

and HMMR (high- and low-penetrance mutations, respectively),

which could highlight a BRCA1-RHAMM function altered in

familial and sporadic breast carcinogenesis.

Analysis of public gene expression datasets suggests that the

rs299290 risk allele is associated with HMMR germline over-

expression (see also Table S3) [23]. However, while the rs299290

variant represents a missense change predicted to be benign

(V368A; concordant predictions for PolyPhen-2 [41] and SIFT

[42] were obtained), it is in linkage disequilibrium (according to

Figure 1. Effect of HMMR rs299290 variation on breast cancer
risk among BRCA1 and BRCA2 mutation carriers. Forrest plots
show HRs and 95% CIs of the additive model (rs299290 C allele) for all
participating centers ordered by sample size (n.30) of BRCA1 mutation
carriers (left panel, wHR per study center are shown in Table S2; right
panel, effect on BRCA2 mutation carriers). The size of the rectangles is
proportional to the corresponding study precision.
doi:10.1371/journal.pbio.1001199.g001

Author Summary

Mutations in two genes that were initially identified as
predisposing carriers to early-onset breast cancer, BRCA1
and BRCA2, cause similar perturbations in cellular respons-
es to DNA damage but predispose carriers to distinct
tumor types. Thus, the two genes may trigger different
carcinogenic processes. We have used genetic analyses of
affected families to uncover additional genetic variation
that is linked to the risk of developing cancer for carriers of
BRCA1 mutations. This variation falls within a centrosomal
gene, named HMMR. The protein product of HMMR, which
is called RHAMM, works in concert with BRCA1 to regulate
the structure of normal breast cells as they grow and
become polarized. This polarization process depends upon
a balance between the activities of BRCA1 and the Aurora
kinase A, with the kinase opposing BRCA1 function and
promoting growth. Our findings provide new insights into
the mechanism through which BRCA1 may promote
commitment of initially bipotent mammary cells towards
the luminal lineage, and how loss of this function may
predispose cells to become breast tumors of a basal-like
type.
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HapMap Caucasians data: D9 = 1 and r2 = 0.48) with rs299284

(R92C in Entrez accession number NP_036616), which is

predicted to be damaging. The minor allele frequencies of

rs299290 and rs299284 in HapMap Caucasian individuals are

29% and 16%, respectively. Since rs299284 is at the fourth base

position of HMMR exon 5, we evaluated the potential alteration of

the splicing pattern of this exon or the ratio of the alternative exon

4. Notably, exon 4 spans the microtubule-binding domain and has

been shown to be skipped with progression of myeloma and breast

cancer [43,44]. However, no differences were observed when

analyzing the splicing pattern of both exons in lymphocytes from

10 BRCA1 mutation carriers (Figure S1) and in public transcrip-

tome sequence datasets (unpublished data). Therefore, further

work may be warranted to conclusively define the causal

mutation(s) and its potential alteration of RHAMM levels or

function.

Association by ER Timor Status and Cytoskeletal
Reorganization during Epithelial Apicobasal Polarization

Breast tumors arising in BRCA1 mutation carriers are typically

ER-negative, whereas most tumors in BRCA2 mutation carriers

and sporadic cases are ER-positive [11,12]. Given the evidence

above, we next evaluated whether HMMR variation was

associated with ER tumor status in BRCA1 and/or BRCA2

mutation carriers. In data provided by several CIMBA groups

(Text S1), no ER-positive tumors were observed among rare

rs299290 homozygotes in BRCA1 mutation carriers (pinteraction

= 0.006), whereas this bias was not observed in BRCA2 mutation

carriers (pinteraction = 0.95) (Table S4). That is, despite the expected

differences in the frequency of tumor types between the two sets of

carriers, heterogeneity was observed in the distribution of

rs299290 genotypes in BRCA1, but not BRCA2, mutation carriers.

This result further suggests an interaction between BRCA1 and

HMMR that influences or regulates differentiation of breast

luminal epithelium. On the basis of these observations and the

published data presented above, we next investigated the

relationship between BRCA1/BRCA1 and HMMR/RHAMM

regulating apicobasal polarization (hereafter polarity/polariza-

tion).

The growth of nonmalignant human mammary epithelial cells,

such as MCF10A and HMT3522 S1, within three-dimensional

cultures containing reconstituted basement membrane (rBM)

recapitulates aspects of the terminal differentiation of mammary

luminal epithelia, including apicobasal polarization, growth arrest,

and milk production [45,46]. The cyst-like polarized structures

(hereafter termed acini) formed by these cell types may, however,

vary in the nature or degree of polarization and tight junction

formation and, unlike heterotypic cultures of stromal and epithelial

cells [47], do not form bilayered cellular organizations [48].

Importantly, disruption of BRCA1 function through shRNA-

mediated depletion impairs differentiation and promotes prolifer-

ation of MCF10A cells within rBM [14]. This seminal observation

has been supported by evidence from other models for

differentiation [15,16] and the examination of human mammary

epithelial cell populations [17]. However, to date, the molecular

contributions of BRCA1 to apicobasal polarization are largely

unknown. Thus, we utilized the growth of MCF10A cells in rBM

as a model for polarization, as determined by the apical

localization of centrosomes, basal deposition of CD49f (also

known as a6-integrin) and reduced expression of vimentin (VIM),

an intermediate filament associated with the basal lineage [49].

These attributes were also captured through quantitation of acini

size and circularity or shape factor (Figure S2).

As BRCA1 and RHAMM functions may intersect at the

organization of microtubules and centrosomes, these structures

were first examined in MCF10A cells grown on two-dimensional

(i.e., plastic) versus three-dimensional (i.e., rBM) cultures. In

plastic, microtubules were assembled at centrally located centro-

somes (Figure 2A). During polarization in rBM, however,

microtubule organization transitioned from centrosome-depen-

dent assembly in early stages of culture to concentrate at non-

centrosome sites, such as regions of cell-to-cell contact, in late

stages (Figure 2B). Centrosomes were repositioned from the

outside of cell clusters to apical surfaces and the eventual site of the

lumen (Figure 2B). This organization was maintained in polarized

acini (Figure 2B) and is comparable to the apical position of

centrosomes in mammary epithelial cells in vivo (see also Figure

S3A) [50]. Thus, polarization of MCF10A is associated with a

transition in the organization of microtubules from centrosome to

non-centrosome sites, consistent with observations in other

epithelial cells or tissues [9,10].

Complementary to the study of microtubules, the dynamics of

VIM were also examined during polarization. In accordance with

a shift from basal to luminal cytoskeletal structures, VIM

abundance was reduced concurrent with the transition to non-

centrosome-dependent microtubule organization (Figure 2C) and

the deposition of CD49f (Figure S2). Therefore, polarization

requires dynamic cytoskeletal organization. However, the mech-

anistic contribution of BRCA1 to this process remains unknown.

Cytoskeletal Reorganization Is Influenced by BRCA1 and
Microtubule-Associated Factors within Polarized Epithelia

As BRCA1 down-regulates centrosome microtubules by target-

ing microtubule-associated factors for proteasome-dependent

degradation [20,21], we hypothesized that this activity may be

important for the transition to non-centrosome-dependent assem-

bly that is essential for polarity [9,10]. To evaluate this hypothesis,

we first examined the impact of BRCA1 depletion on polarization

and cytoskeletal structures. In agreement with a previous report

[14], transduction of lentiviral-based shRNAs against BRCA1

expression (shRNA-BRCA1) impaired polarization; observed acini

in this condition were, on average, significantly larger and less

circular than controls (Figure 3A). Results were similar following

transduction of individual (two different sequences) or pooled

shRNAs, with transient or stable shRNA expression assays, and

over a time course of one or two weeks (Figures S4 and S5). In

addition, VIM and CD49f expression were increased and reduced,

respectively, in acini depleted of BRCA1 relative to controls

(Figure 3A and S6). Thus, loss of BRCA1 function may impair

polarization by altering intracellular cytoskeletal organization,

resulting in intermediate filament content consistent with the

characteristic basal-like tumor type.

While BRCA1 haploinsufficiency does not preclude the

formation of a functional luminal layer, the cytoskeletal structure

within luminal epithelia from BRCA1 mutation carriers might be

compromised. Accordingly, histologically normal breast tissue

from BRCA1 mutation carriers revealed elevation of ALDH1-

positive cells with reduced expression of cytoskeletal markers

(cytokeratins 18 and 14) and ER [16]. Given these observations,

we evaluated TUBG1 staining, as a centrosome marker, in breast

tissue paraffin sections from four affected BRCA1 mutation

carriers. Three hyperplastic lesions were identified that showed

abnormal localization of the centrosome when considering their

respective nuclei and lumen (Figure S3B). Although the number of

samples is limited, these results agree with the loss of polarity

observed in MCF10A cells after BRCA1 depletion.
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Next, we used chemical and biological tools to dissect the

mechanistic contribution of BRCA1 to MCF10A polarization.

Should polarization require BRCA1-mediated reduction in

microtubule assembly at the centrosome, proteasome inhibition

may disrupt this transition, even in the presence of BRCA1. When

grown in rBM, the major phenotypic response of MCF10A cells to

proteasome inhibition (MG132, see Materials and Methods) was

growth ablation and/or retardation (unpublished data). However,

exposure to 100 nM of MG132 for short periods of time resulted

in abnormal acini that deviated from circularity with impaired

centrosome apical polarity (Figure 3B). Additionally, proteasome

inhibition altered centrosome structures, resulting in diffuse and

enlarged pericentrin (PCNT) organization (Figure 3B, arrows).

Thus, proteasome inhibition phenocopies aspects of BRCA1

depletion, which suggests that proteolytic degradation of BRCA1-

target(s), such as RHAMM [23], may be critical for polarization.

To further evaluate this, we examined the influence of BRCA1

depletion and proteasome inhibition on the abundance of

RHAMM and aurora kinase A (AURKA), a defined proteasome

target [51]. Importantly, both proteasome inhibition and BRCA1

Figure 2. Centrosome microtubule assembly is altered as MCF10A are cultured on two- or three-dimensional systems. (A)
Microtubule density (a-tubulin, TUBA) is concentrated around centrosomes (PCNT) within adherent MCF10A. (B) When grown in rBM, microtubule
density (TUBA and b-tubulin, TUBB) is initially (top panels, days 1–3 of culture) concentrated around centrosomes (deconvolved z-slices from
epifluorescence microscopy images, left panels; confocal microscopy images, right panels; E-cadherin, CDH1; and TUBG1). Upon apical localization of
centrosomes (middle panels, days 4–7), microtubule density is amplified at cell-to-cell contacts, as determined by CDH1. This organization is
maintained through acinar morphogenesis and lumen formation (bottom panels, after day 10). Scale bars represent 20 mm. (C) Reorganization of VIM
intermediate filaments during apicobasal polarization in rBM culture. Confocal images were acquired with equivalent settings to allow comparison of
intensities. Scale bars represent 20 mm.
doi:10.1371/journal.pbio.1001199.g002
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depletion increased the abundance of RHAMM (Figure S7), which

is also consistent with observed RHAMM over-expression in

breast cancer cell lines derived from BRCA1 mutation carriers

[23]. BRCA1 depletion, however, did not alter AURKA levels

(Figure S7). Thus, RHAMM abundance, which is responsive to

both BRCA1 depletion and proteasome inhibition, may play a

pivotal role in the polarization necessary for differentiation.

One critical role of RHAMM/xrhamm may be the accumu-

lation of TUBG1/tubg1 at the centrosome to influence microtu-

bule assembly [26,27] and interphase microtubule dynamics [28].

To further determine whether accumulation of microtubule-

associated factors was sufficient to disrupt polarization, RHAMM

and TUBG1, tagged with the green-fluorescent protein (GFP;

TUBG1-GFP), were constitutively over-expressed in MCF10A

cultures. Even in the presence of BRCA1, over-expression of

RHAMM produced significantly larger and less circular acini

(Figure 3C). Accordingly, over-expression of TUBG1-GFP (but

not GFP alone) impaired centrosome apical localization and

resulted in grape-like cell clusters with aberrant mitotic spindles

(Figure 3D). Therefore, increases in microtubule-associated

factors–through BRCA1 depletion, proteasome inhibition, or

over-expression of centrosome proteins targeted by BRCA1-

dependent ubiquitination–impair polarization. If decreased mi-

crotubule assembly at centrosomes is fundamental to BRCA1-

mediated polarization, concurrent depletion of BRCA1 and

associated factors may recover this process.

Interactions between AURKA, BRCA1, HMMR, and TPX2
Regulate Polarization

Active AURKA phosphorylates BRCA1 to influence interphase

microtubule assembly at the centrosome [52]; in turn, AURKA is

activated by a complex with targeting protein for Xenopus kinesin-

like protein 2 (TPX2) [53]. Therefore, to comprehensively

examine the molecular determinants of BRCA1-mediated polar-

ization, we evaluated the consequences of single and concurrent

depletions of AURKA, BRCA1, RHAMM, and TPX2 expression.

As with experiments targeting BRCA1 expression, depletion of

AURKA, RHAMM, and TPX2 was performed using individual

and pooled shRNAs, with transient or stable shRNA expression

assays, and over a time course of one or two weeks (Figures S4 and

S5). Note that depletions were not complete for any target, so

results should be interpreted in the context of partial loss-of-

function. Depletion of TPX2 did not impair growth, did not

disrupt polarization, and only slightly reduced the average acini

area (Figures 4A,B, S4, and S5). However, depletion of AURKA

significantly reduced two- and three-dimensional cellular growth

(Figures 4A,B, S4, and S5), which parallels the effect of a small

molecule inhibitor [54]. Finally, depletion of RHAMM induced

visible scattering in two-dimensional growth (Figure S4B) and

increased the area and altered the circularity of acini (Figures 4A,B,

S4, and S5). These results were further supported by observations

of VIM and CD49f immunostaining in acini (Figure S6). Thus,

alteration of RHAMM levels by over-expression or depletion

impairs polarization in a similar manner to BRCA1 depletion,

which suggests critical regulation of RHAMM in this process.

Having established the effects of single depletions, we

investigated the genetic interactions that regulate polarization.

Using concurrent, transient assays with pooled shRNAs, we

identified interactions between AURKA and HMMR (type double

nonmonotonic [55]), BRCA1 and TPX2 (type suppressive [55]),

and HMMR and TPX2 (type suppressive [55]) that regulate

polarization (Figure 4C). Notably, simultaneous depletion of

BRCA1 and RHAMM did not rescue the polarity defects of the

corresponding single depletion assays (Figure 4C, 4F, and 4G). In

fact, equivalent acini alterations were observed. As down-

regulation of a microtubule-associated factor (i.e., RHAMM) did

not recover BRCA1 depletion, a more complex regulation of

cytoskeletal reorganization during polarization may exist.

In contrast to single depletions, simultaneous reduction of

AURKA and RHAMM levels recovered normal acini formation

(Figure 4C–G), possibly implying a negative regulatory relation-

ship between RHAMM abundance and AURKA activity.

Although mechanistic insight into this relationship is lacking,

RHAMM depletion also protects against small-molecule inhibition

of AURKA in a different cell model [56]. Notably, depletion of

TPX2, the major activator of AURKA [53], recovered normal

acini formation with concurrent depletion of either BRCA1 or

RHAMM (Figure 4C, 4F, and 4G). Together, these genetic

interactions suggest that a balance between AURKA-TPX2 and

BRCA1-BARD1 activities, mediated by RHAMM, may deter-

mine proliferation and polarization.

Should AURKA antagonize BRCA1-BARD1 ubiquitination

activity to promote centrosome-dependent microtubule assembly

[52], AURKA depletion may amplify the degradation of BRCA1-

targeted molecules. As presented above, we confirmed this

relationship by examining RHAMM abundance, which was

augmented by BRCA1 depletion (Figure S7B and S7C).

Consistently, AURKA depletion reduced RHAMM levels (Figure

S7C), while simultaneous depletion of AURKA and BRCA1

recovered RHAMM to control levels (Figure S7C). Taken

together, these data indicate a critical relationship between

Figure 3. BRCA1 and RHAMM function in epithelial apicobasal polarization. (A) BRCA1 depletion (shRNA-mediated assay) impairs
polarization. Representative bright-field images are shown from control vector pLKO.1 and shRNA-BRCA1 (pLKO.1-based) transduced cultures. Scale
bars represent 20 mm. Confocal microscopy images of VIM immunostaining in control and BRCA1-depleted acini are shown. The graph shows results
for the area and shape factor measures from four independent experiments. Asterisks indicate significant differences (two-sided t test p,0.05) from
controls. (B) Proteasome inhibition (MG132 100 nM) significantly altered acini area and shape factor, and centrosome structure and polarity.
Representative bright-field images are shown from DMSO- or MG132-treated cultures. Confocal microscopy images for centrosome structure and
polarity (PCNT) in acini following proteasome inhibition, with nuclei counterstained with TOPRO (false color red), are shown. Arrows indicate altered
centrosome structures. The graph shows the results of at least three independent experiments. Average centrosome polarity was determined from
PCNT signal position within acini relative to nuclei. Across treatments, 33 acini were analyzed, averaging 24.7 centrosomes and nuclei/acini. Circles
indicate significant differences (two-sided t test p,0.005) to controls. (C) RHAMM over-expression (pLenti6.2-driven) impairs polarization.
Representative bright-field images are shown from control GFP vector or RHAMM (pLenti6.2-) transduced cultures. Middle panel, Western blot
analysis for RHAMM over-expression. The graph shows the results of four independent experiments. Values were normalized to untreated cultures
within experiments and differences evaluated from GFP controls. (D) TUBG1-GFP over-expression (pLenti6.2-driven) impairs polarization. MCF10A
were transduced with GFP or TUBG1-GFP expression constructs, selected with blasticidin and fluorescence-activated cell sorting. Sorted cells were
then analyzed for polarization in rBM and the resulting acini examined by bright-field and epifluorescence microscopy. GFP over-expression
permitted polarization (left panels). However, acini over-expressing TUBG1-GFP were unable to polarize (representative acini at bottom left in the
right panels). Blasticidin-resistant clones with low TUBG1-GFP expression formed normal acini with lumen, as indicated by DAPI (top right acini in the
bright-field image). Scale bars represent 20 mm.
doi:10.1371/journal.pbio.1001199.g003
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AURKA and BRCA1 in regulating RHAMM abundance and,

thus, polarization.

pT703-RHAMM Negatively Regulates AURKA Activity
through Nuclear Sequestration of TPX2

Complementary analyses suggest a BRCA1-HMMR interaction

linked to early-onset, ER-negative breast tumorigenesis, while

polarization studies suggest that RHAMM abundance is central to

BRCA1 and AURKA activities. As AURKA function relies upon

a physical association with TPX2 [53], we next investigated

protein complexes through the cell cycle to determine the

relationship between RHAMM abundance and AURKA activity.

Consistent with prior reports [26,27], co-immunoprecipitation

assays confirmed strong reciprocal interactions between RHAMM

and TPX2 during periods of microtubule re-organization (G2/M,

spindle assembly, and M/G1, spindle disassembly) (Figures 5A and

S8). Importantly, immunoprecipitation of BRCA1-associated or

TPX2-associated protein complexes revealed mobility-shifted

RHAMM species suggestive of phosphorylation (Figure S8).

Threonine 703 (T703) is an evolutionarily conserved phosphor-

ylated residue in RHAMM [57] similar to a consensus aurora

kinase Ipl1p site [58]. We carried out complementary analyses to

test this site as an AURKA substrate. Ectopic expression of GST-

AURKA increased levels of phosphoT703-RHAMM (pT703-

RHAMM) (Figure 5B), as detected by a novel polyclonal antibody

(Figure S9 and Materials and Methods). In MCF10A cells,

AURKA abundance and activity determined total RHAMM as

well as pT703-RHAMM levels (Figure S10A). An in vitro kinase

assay with recombinant AURKA confirmed T703-RHAMM site-

specific activity (Figure 5C). Finally, pT703-RHAMM was

reduced in a dose-dependent manner with AURKA inhibition

(Figures 5D and S10B) and with mitotic progression (Figure 5E),

which is consistent with AURKA degradation in anaphase [51].

Importantly, while total RHAMM was predominantly cytoplas-

mic with enrichment at microtubules and centrosomes, pT703-

RHAMM localized to interphase nuclei (Figure 5F). This

observation prompted the hypothesis that pT703-RHAMM

maintains homeostasis of AURKA activity by sequestering

TPX2 in the nucleus. Consistent with this hypothesis, pT703-

RHAMM immunoprecipitated with TPX2 during periods of high

AURKA activity (G2/M as previously described [52]) (Figures 5A

and S8), while RHAMM depletion not only redistributed TPX2 to

the cytoplasm and nuclear envelope (Figure 6A) but also increased

the level of TPX2 immunoprecipitated with AURKA (Figure 6B).

In addition, RHAMM depletion increased AURKA activity as

measured by an in vitro kinase assay with beads from AURKA

and TPX2 immunoprecipitations (Figure 6C). Collectively, these

data indicate that RHAMM maintains AURKA homeostasis as a

kinase substrate that, when phosphorylated, negatively regulates

AURKA-TPX2 complex formation. Moreover, these results

Figure 4. Genetic interactions influencing epithelial apicobasal polarization. (A) shRNA-mediated depletion of centrosome components
impairs polarization. Representative bright-field images are shown for results of untreated and control vector pLKO.1, shRNA-AURKA, shRNA-BRCA1,
shRNA-HMMR, or shRNA-TPX2 transduced cultures of MCF10A cells in rBM. Magnification is equivalent for all images and scale bars represent 20 mm.
(B) Acini architecture was quantified from bright-field images of cultures treated as described above. For comparison between experiments, all values
were normalized to untreated cultures within experiments and differences assessed statistically relative to pLKO.1. Shape factor values for single cells,
or small clusters, are not plotted. The graph shows the results of at least four independent experiments. For all graphs, asterisks and circles indicate
significant differences (two-sided t test p,0.05 and p,0.005, respectively) from controls (pLKO.1). (C) Representative bright-field images of acini from
concurrent depletions (shRNA-mediated) as indicated. (D) AURKA-HMMR interact in the regulation of polarization: HMMR depletion rescues the
abnormality seen in the shRNA-AURKA assay. Graph shows the results of three independent experiments. (E) Quantification of acini per well confirms
the genetic interaction between AURKA and HMMR. Graph shows the results of duplicate experiments. (F) TPX2 depletion is suppressive to
abnormalities caused by shRNA-BRCA1 and shRNA-HMMR. Graph shows the results of at least three independent experiments. (G) Prior to the shRNA
assays, published data proposed the hypothesis of a signaling pathway from TPX2 to RHAMM regulating polarization; degradation of the
microtubule-associated factor RHAMM, through BRCA1, was predicted as key to polarization. However, several observations from the single and
concurrent depletion assays (depleted proteins are indicated in grey font) diverged from the expected results (divergent observations are italicized).
RHAMM depletion impaired polarization in a manner that was rescued by concurrent depletion of AURKA or TPX2, but not BRCA1. On the other hand,
concurrent depletion of BRCA1 and TPX2 revealed normal acini.
doi:10.1371/journal.pbio.1001199.g004
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Figure 5. pT703-RHAMM functionally connects AURKA with BRCA1 and TPX2. (A) Molecular diagram of co-immunoprecipitation results
(Figure S8) between centrosome module components across the cell cycle, including complexes from pT703-RHAMM IPs (shown in red). (B) Over-
expression of GST-AURKA increases pT703-RHAMM. Lysates from HeLa cells, untreated or transfected with GST-AURKA, were immunoblotted for the
indicated proteins (GST-AURKA detected by anti-GST). (C) Position T703 of RHAMM is an AURKA substrate in vitro. When normalized to reactions
lacking substrate, the combination of recombinant AURKA, ATP, and a T703-containing peptide substrate (acetyl-CKENFALK(T)PLKEGNT-amide)
resulted in time-dependent consumption of ATP as measured by luminescence. In contrast, a pre-phosphorylated (PO4) T703-containing peptide
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illustrate how depletion of RHAMM alone, or in combination

with BRCA1, impairs polarization through augmentation of

AURKA activity.

pT703-RHAMM Expression in BRCA1 Mutant Breast
Cancer Cells and Tumors; A Mechanistic Model for
Polarization and Increased Risk of Breast Cancer

The data above indicate that a balance between BRCA1-

mediated turnover and AURKA-mediated phosphorylation of

RHAMM regulates polarization versus proliferation. To evaluate

the link with carcinogenesis, pT703-RHAMM immunochemistry

was performed in BRCA1 mutant breast cancer cells, HCC1937

line, their wild-type reconstituted counterparts, and in primary

breast tumors. As a result, pT703-RHAMM staining was revealed

to be strong at the nuclear envelope of HCC1937 cells but

homogenous and less intense in the nucleus of the reconstituted cells

(Figure 7A). Subsequently, high expression of pT703-RHAMM was

scored in 58% (n = 11) and 50% (n = 4) of BRCA1 mutation carriers

and sporadic ER-negative tumors, respectively, but in 36% (n = 5)

and 30% (n = 10) of BRCA2 mutation carriers and sporadic ER-

positive tumors, respectively (Figure 7B). Although this dataset is

limited, the results support the indication of an interplay between

BRCA1 and RHAMM, which is altered in breast carcinogenesis.

Our data delineate a model in which different types of

relationships between high- and low-penetrance breast cancer

susceptibility genes and their products regulate the polarization

necessary for terminal differentiation of luminal epithelia. That is,

BRCA1 and AURKA activities, as regulated by RHAMM and

TPX2, control this transition and regulate cellular proliferation

and differentiation (Figure 8). In this model, concurrent depletion

of BRCA1 and RHAMM does not recover normal acinar

morphogenesis because target degradation of RHAMM may be

restricted to late phases of polarization. This model is consistent

with reduced expression of AURKA, TPX2, and HMMR, but to a

Figure 6. RHAMM depletion alters TPX2 localization and AURKA activity. (A) Depletion of RHAMM, but not BRCA1, results in re-localization
of TPX2 from the nucleus to the nuclear envelope and cytoplasm (arrows). With RHAMM depletion, microtubule organization is less focused and
radial. Scale bar represents 20 mm. (B) RHAMM depletion alters AURKA-TPX2 association. In triplicate experiments, MCF10A were untreated or
depleted of BRCA1 or RHAMM, and lysates were immunoprecipitated with AURKA, TPX2, or control IgG antibodies. Compared to untreated or BRCA1-
depleted samples, RHAMM depletion resulted in an increase of TPX2 co-precipitated with AURKA. Short and long Western blot exposures are shown.
(C) RHAMM depletion alters AURKA activity. Immunoprecipitation beads from triplicate experiments were analyzed for kinase activity using
luminescent detection of ATP. Luminescence values were normalized to those obtained for beads precipitated with control IgG. Beads from
untreated lysates precipitated with AURKA but not TPX2 antibodies demonstrated modest kinase activity. Depletion of RHAMM led to a significant
increase in kinase activity with both AURKA and TPX2 precipitation (asterisks indicate one-sided t test p,0.05). Graph shows means and standard
errors from triplicate experiments.
doi:10.1371/journal.pbio.1001199.g006

(acetyl-CKENFALK(PO4-T)PLKEGNT-amide) showed muted AURKA activity. Asterisk and circles indicate significant differences (two-sided t test p#0.05
and p,0.005, respectively) relative to control condition (no peptide). (D) AURKA inhibition results in specific loss of pT703-RHAMM. Lysates of HeLa
treated with graded concentrations of an AURKA inhibitor (see Materials and Methods) were immunoblotted for the indicated endogenous proteins.
(E) pT703-RHAMM cellular immunoreactivity is lost post-metaphase. Consistent with previous reports [23,63,76], total RHAMM decorates all
microtubule structures throughout mitosis. In contrast, pT703-RHAMM is lost, or reduced, on microtubule structures after metaphase (arrows).
Interphase cells within the field of view indicate specific loss of pT703-RHAMM post-metaphase. The indicated mitotic stage was determined by
microtubule organization and DNA condensation (unpublished data). (F) pT703-RHAMM localizes to nuclear compartments. pT703-RHAMM localizes
to the nucleus and nuclear envelope. An in-frame post-metaphase cell indicates that nuclear labeling is specific to interphase. Magnification is
equivalent for all images and scale bar represents 10 mm.
doi:10.1371/journal.pbio.1001199.g005

BRCA1-RHAMM and Breast Carcinogenesis

PLoS Biology | www.plosbiology.org 11 November 2011 | Volume 9 | Issue 11 | e1001199



lesser extent BRCA1, with polarization and growth arrest of

nonmalignant mammary epithelial cells, as measured by gene

expression profiling (Figure S11A) [59]. Deviation from this

pathway, through loss of BRCA1 function or augmentation of

microtubule-associated factors, may impair terminal differentia-

tion of luminal epithelia and promote tumorigenesis. Consistently,

HMMR over-expression might be detectable as early as the

transition from normal breast tissue to hyperplasia (Figure S11B)

[60]. In our cellular assays for polarization, however, concurrent

BRCA1 depletion and RHAMM over-expression did not result in

an additive disruption of polarity, perhaps due to the non-additive

alteration of RHAMM abundance and variable BRCA1 depletion

(Figure S12). According to the model and as stated above, analysis

of public gene expression datasets suggests that the rs299290 risk

allele is associated with HMMR germline over-expression (Table

S3) [23]. As the potential splicing alteration by rs299284 might be

tissue specific and RHAMM-R92 was used in the over-expression

assays, further work may be warranted to define the causal

mutation(s) and the alteration of RHAMM function and/or

expression level according to the depicted model.

Discussion

We have investigated gene and protein interactions in a

centrosome-cantered module, including BRCA1/BRCA1 and

HMMR/RHAMM, across biological systems ranging from breast

cancer risk estimates to cellular phenotypes and cytoskeletal

structures. Consistent findings between these systems provide

insights into diverse processes and conditions. First, the key role of

this module in epithelial apicobasal polarization suggests that

genetic variation in its components might influence risk of breast

cancer. Accordingly, a common candidate breast cancer-predis-

position allele in HMMR, originally identified in an Ashkenazi

Jewish study [23], may specifically modify breast cancer risk

among BRCA1 mutation carriers. Population-discordant results for

HMMR [61], and possibly for other components of this module

(i.e., AURKA [62]), might be due to genetic differences between

populations. A recent report has suggested that common genetic

variation in genes encoding for centrosome pathway components

(excluding AURKA and HMMR) may frequently influence risk of

breast cancer and, notably, includes variants in TACC3–a

proposed HMMR homolog [63]–TUBG1, and TPX2 loci [64].

Figure 7. pT703-RHAMM expression in BRCA1 mutant breast cancer cells and tumors. (A) pT703-RHAMM staining is strong at the nuclear
envelope of HCC1937 cells (BRCA1 mutated or transduced with an empty vector; left and middle panels, respectively) but homogeneous nuclear in
BRCA1 wild-type reconstituted cells (right panel). (B) Results of pT703-RHAMM staining scores in primary breast tumors with different BRCA1/2
mutation and ER status. Results correspond to scores from two pathologists (see Materials and Methods).
doi:10.1371/journal.pbio.1001199.g007

Figure 8. Mechanistic model of interplay between AURKA,
BRCA1, RHAMM, and TPX2 that regulates proliferation versus
polarization. Proliferation is proposed to be linked to an active (‘‘on’’)
status of AURKA while differentiation would be linked to an active
BRCA1 status, both centered on tight regulation of RHAMM level and
localization.
doi:10.1371/journal.pbio.1001199.g008

BRCA1-RHAMM and Breast Carcinogenesis

PLoS Biology | www.plosbiology.org 12 November 2011 | Volume 9 | Issue 11 | e1001199



Our results highlight the importance of conducting comprehensive

evaluations of the interactions between cancer susceptibility genes

and their products across systems to delineate the potential

relationship with carcinogenesis [65].

A unifying mechanism of breast carcinogenesis linked to

BRCA1 loss-of-function should provide a comprehensive expla-

nation for the observed accumulation of stem and luminal

progenitor cells [17–19], and for the characteristic pathological

features of the corresponding tumors [11,12]. The results of our

study suggest that BRCA1 promotes the polarization necessary for

luminal differentiation, in part, by orchestrating the dynamic

transition to microtubule assembly at non-centrosome sites (i.e.,

cell-to-cell contacts). Transition to microtubule anchorage at

adherens junctions regulates epithelial cell-to-cell contacts [9] that,

in turn, instruct mammary stem cell fate and differentiation [66].

Thus, the switch to non-centrosome-dependent assembly of

microtubules may be essential in discriminating between prolifer-

ating and differentiated cells, as also observed recently in

myoblasts [67] and neurons [68]. Should BRCA1 function(s)

promote this transition in mammary stem/progenitor cells,

impaired luminal differentiation in BRCA1 mutation carriers and

a propensity to develop basal-like tumors with elevated prolifer-

ative capacity would be expected. Further studies using different

polarization and/or differentiation cellular models may be

warranted to corroborate the depicted mechanism.

Proliferation is promoted by activated AURKA but, as occurs in

tightly synchronized cell cycle events [69], possibly regulated

through a negative feedback loop as identified in this study. In

preparation for mitotic spindle assembly, AURKA promotes

centrosome-dependent microtubule assembly by suppressing

BRCA1-dependent ubiquitination [52], which involves BRCA1

phosphorylation at S308 [70]. Subsequently, terminal differenti-

ation is proposed to be mediated by BRCA1 activation and

RHAMM degradation. Accordingly, BRCA1 depletion increases

the clonogenic potential of mammary epithelia [14–16], while a

BRCA1 S308A mutant alters embryonic stem cell differentiation

[71]. Moreover, RHAMM abundance may be central to the

balance between AURKA-TPX2 and BRCA1-BARD1 activities

during polarization; consistently, depletion of RHAMM also

impairs ciliary differentiation of human respiratory epithelial cells

[72]. However, key components of the depicted molecular wiring

diagram are probably missing, such as a phosphatase that

regulates AURKA-mediated modification of BRCA1 and

RHAMM. Additionally, loss of BRCA1 function is likely to alter

complementary pathways such as the regulation of epithelial-

mesenchymal transition [19] and androgen receptor signaling

[73].

A key question remains regarding the significance of BRCA1

function to stem/progenitor differentiation and BRCA1 haploin-

sufficiency. Examination of histologically normal breast tissue in

BRCA1 mutation carriers revealed cellular foci expressing stem cell

markers and lacking cytoskeletal structures characteristic of

luminal epithelia [16]. Here, we suggest an alteration of

polarization in preneoplastic lesions. Neither of these presentations

is as severe as those observed in murine mammary epithelial

tissues reconstituted from human cells depleted of BRCA1 [19].

Thus, BRCA1 dose or mutation type may distinctly affect the tissue

architecture and function, leading to differences in the accumu-

lation of stem or progenitor cells, and the resulting tumor type

[74]. More detailed examination of mammary gland histology and

function may reveal specificities in BRCA1 mutation carriers

reflective of a gradient in the disruption of luminal differentiation.

To summarize, this study describes a mechanistic model in which

high- and low-penetrance breast cancer susceptibility genes and

their products are connected through a series of genetic,

molecular, and functional interactions that, when perturbed, alter

proper epithelial apicobasal polarization and may lead to an

increased risk of breast cancer.

Materials and Methods

Ethics Statement
BRCA1 and BRCA2 mutation carriers were recruited under the

CIMBA initiative following approval of the corresponding

protocols by institutional review boards or ethics committees at

each participating centre, as described [32,33].

Study Samples, Genotyping, and Statistical Analyses
Study acronyms are detailed in Table S2. The NICCC centre in

Israel followed similar protocols and similar approval processes.

Deviation from Hardy-Weinberg equilibrium was evaluated

among unrelated participants separately for each study. Risk

estimates and significance testing were computed using standard

and weighted Cox regression models [35] that included centre,

country, and birth cohort (,1940, 1940–1949, 1950–1959, and

$1960) as stratification factors and ethnicity as the covariate for

adjustment. A robust variance estimate was used to account for

familial correlation. Time to diagnosis of breast cancer from birth

was modeled by censoring at the first of the following events:

bilateral prophylactic mastectomy, breast cancer diagnosis,

ovarian cancer diagnosis, death, and last date known to be alive.

Participants were considered affected if they were censored at

breast cancer diagnosis and unaffected otherwise. The weighted

cohort approach involves assigning weights separately to affected

and unaffected individuals such that the weighted observed

incidences in the sample agree with established estimates for

mutation carriers [35]. This approach has been shown to adjust

for the bias in the HR estimates resulting from the ascertainment

criteria used, which leads to an over-sampling of affected women.

Weights were assigned separately for carriers of mutations in

BRCA1 and BRCA2 and by age interval (,25, 25–29, 30–34, 35–

39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, $70). Polymor-

phism data were analyzed as a three-group categorical variable

(codominant model) and using restricted inheritance models (log-

additive, dominant and recessive). The p values were derived from

the robust score test. All statistical analyses were carried out using

R software. Linkage analysis was performed with GENEHUN-

TER version 2.1 [75].

Cell Culture
HeLa (American type culture collection, ATCC), 293FT

(Invitrogen), and MCF10A (ATCC) were cultured in media as

recommended. For growth factor-reduced experiments, media

(HuMEC from Invitrogen or HMEC from Lonza) contained 1/3

recommended hEGF. Growth in rBM (Cultrex from Trevigen or

Geltrex from Invitrogen) followed embedded or on-top techniques

as described [45]. MCF10A were embedded in rBM for

proteasome inhibition (MG132; Sigma-Aldrich) experiments; for

other endpoints, embedded and on-top conditions were equiva-

lent. For rBM growth, MG132 or equivalent DMSO volumes

were added to media at seeding, or as indicated, for two days. For

proteolysis protection, MG132 (1.5 mM) was added for 3 h prior to

lysis. For AURKA inhibition, a commercially available AURKA

inhibitor (C1368; Sigma-Aldrich) was titrated and used at

100 nM. For TUBG1-GFP expression, MCF10A were transduced

with a lentiviral-based vector, sorted, and selected for blasticidin

resistance (pLenti6.2/EmGFP-DEST, Invitrogen).

BRCA1-RHAMM and Breast Carcinogenesis

PLoS Biology | www.plosbiology.org 13 November 2011 | Volume 9 | Issue 11 | e1001199



Constructs, Transductions, and Transfections
For expression in MCF10A, RHAMM and TUBG1-GFP were

subcloned into pDONR223 (Invitrogen), sequenced, and trans-

ferred to pLenti6.2/V5-DEST following the manufacturer’s

instructions (Invitrogen). All constructs maintained native stop

codons. Depletion assays used MISSION shRNA sequences

(Sigma-Aldrich), shown in Table S5. The lentiviral packaging,

envelope, control, and GFP expression plasmids (psPAX2,

pMD2.G, non-hairpin-pLKO.1, scrambled-pLKO.1, and

pWPT-GFP) were purchased from Addgene. Production and

collection of lentiviral particles followed a modified Addgene

protocol. Initial viral titres .56105/ml were confirmed by Lenti-

X GoStix (Clontech) and supernatants were then concentrated by

ultracentrifugation or Lenti-X Concentrator (Clontech) and stored

at 280uC. Concentrated viral supernatants were titrated for

optimal inhibition of target gene products, by immunoblot at 5 d,

and MCF10A survival. For shRNA-mediated depletion of

BRCA1, four shRNA species were purchased and tested; these

sequences were distinct from that previously described [14]. For

depletion of AURKA, RHAMM, and TPX2, five shRNA

constructs were purchased for each gene (Sigma-Aldrich). Initial

experiments used combinations of shRNAs targeting individual

genes (up to five sequences per gene) at a multiplicity of infection

of five. For confirmation experiments, individual and redundant

constructs were identified with high knockdown efficacy. Two

shRNA sequences effectively reduced the expression of AURKA

(59-ACGAGAATTGTGCTACTTATA-39 and 59-CCTGTC-

TTACTGTCATTCGAA-39), BRCA1 (59-CACCTAATTG-

TACTGAAT-39 and 59-TACAAGAAAGTACGAGAT-39), and

RHAMM (59-CGTCTCCTCTATGAAGAACTA-39 and 59-

GCCAACTCAAATCGGAAGTAT-39), respectively. These

shRNAs have also been independently validated for reduction in

mRNA levels by the manufacturer (67%–87% reduction, Sigma-

Aldrich). Only one sequence efficiently reduced expression of

TPX2 (59-CCGAGCCTATTGGCTTTGATT-39). Transient

transfection of GST-AURKA in HeLa and MCF10A followed

the manufacturers’ suggested protocols for Lipofectamine 2000

(Invitrogen) or FuGENE (Roche).

Biochemical Assays
Synchronization and immunoprecipitation, and immunofluo-

rescence of cells and acini, were performed as described

previously [27,45]. For immunofluorescence analysis, cells were

mounted in 90% glycerol/PBS and counterstained with DAPI or

TOPRO. The in vitro kinase assay with recombinant HIS-

AURKA (PTP055, Cell Science) followed the protocol for the

PKLight HTS Protein Kinase Assay Kit (Lonza), as suggested by

the manufacturer. Reactions were performed in triplicate.

Luminescence values were normalized to the mean value for

no-substrate (HIS-AURKA alone) reactions. The activity of

endogenous AURKA was determined by performing the kinase

assay with ATP, substrate, and immunoprecipitation beads_IgG

(negative control), anti-AURKA (positive control), or anti-TPX2

from MCF10A lysates but without recombinant AURKA.

Consumption of ATP was determined after incubation for

30 min.

Antibodies
For total RHAMM, a previously developed and characterized

polyclonal antibody (originally named anti-IHABP) was used

[24,76]. The specificity of this antibody has been further evaluated

elsewhere (see also Figure S9) [23,27]. The phosphorylation-

specific polyclonal antibody against pT703-RHAMM is a custom

reagent generated by New England Peptide. For this antibody,

unpurified and purified sera were tested for specificity relative to

the RHAMM-total antibody defined above. These assays included

immunoblots with shRNA-mediated depletion of RHAMM

(Figure S9). Other antibodies included anti-ACTB (A5060,

Sigma-Aldrich), anti-AURKA (1G4, Cell Signaling Technology),

anti-BRCA1 (SD118, Calbiochem), anti-CD49f (4F10, Millipore),

anti-CDH1-Alexa 488 (24E10, Cell Signaling Technology), anti-

GST (GE healthcare), anti-MYC (9E10, Sigma-Aldrich), anti-

PCNT (Covance), anti-TUBA (B512, Sigma-Aldrich), anti-TUBB-

Alexa 647 (9F3, Cell Signaling Technology), anti-TUBG1

(GTU88, Sigma-Aldrich), and anti-VIM (V9, Sigma-Aldrich; or

R28, Cell Signaling Technology). Secondary antibodies for

immunofluorescence (Alexa) were obtained from Molecular

Probes (Invitrogen) and GE Healthcare for immunoblot analysis

(HRP-conjugated).

Image Acquisition and Quantitation
Blind deconvolution with AutoQuant (AutoQuant Imaging Inc.)

was performed on images from an Axiovert microscope with Plan-

Apochromat 636 objective (Zeiss) (numerical aperture (NA) 1.25)

with Z-steps from 0.5–1.0 mm. Alternatively, a Leica DMI 6000

laser scanning confocal microscope equipped with a Leitz HCX

Pl-Apo CS 406 oil objective (1.25 NA) captured images as

indicated. Epifluorescence images were acquired with an Olympus

BX-60 using a Spot camera and Spot3.2.4 software (Diagnostic

Instruments). For quantitation of growth in rBM, bright-field

images of acini were analyzed for size and shape with ImageJ

software (National Institutes of Health). For shape analysis, the

square of the inverse of circularity was plotted. The position of the

centrosome relative to the lumen, or centre of the cellular cluster,

was measured using pericentrin immunofluorescence or TUBG1-

GFP in image stacks.

Breast Cancer Cell Line, Tumors, and Immunochemistry
In order to reconstitute HCC1937 cells with wild-type BRCA1,

the corresponding full-length open-reading frame was cloned into

a retroviral vector S11N and transduced. Assays with the empty

vector were used as controls. Cells were fixed in 2% paraformal-

dehyde and immunochemistry carried out following a standard

labelled streptavidin biotin (LSAB) method. For tumors, immu-

nohistochemical staining was performed by the Envision method

(Dako, Glostrup, Denmark), with a heat-induced antigen retrieval

step. Sections from the tissue array were immersed in 10 mM

boiling sodium citrate at pH 6.5 for 2 min in a pressure cooker,

and antibodies were used at dilution of 1:1,500 and 1:1,000 for

pT703-RHAMM and TUBG1, respectively. Scoring for pT703-

RHAMM was performed in a blind and independent manner by

two pathologists with an initial correlation value of 0.75.

Discordant results were then assessed jointly but blind from the

genetic status of the samples. Hyperplastic lesions in BRCA1

mutation carriers were also assessed by both pathologists.

Supporting Information

Figure S1 Evaluation of potential alteration of the HMMR

splicing pattern by rs299284 variation. Lymphocytes from 10

BRCA1 mutation carriers were isolated and DNA and RNA

samples purified for genotyping and expression analyses, respec-

tively. Five major homozygotes and five heterozygotes for

rs299284 were identified, which revealed complete linkage

disequilibrium with rs299290 (unpublished data). Next, reverse

transcriptase polymerase chain reactions (30 cycles) were carried

out with forward (59-GACAAAGATACTACCTTGCCTGCT-

39) and reverse (59-CAGCATTTAGCCTTGCTTCCATC-39)
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primers. Sequences were obtained using the reverse primer.

Variation at rs29984 (marked by an arrow) does not alter the exon

5 acceptor donor site or the exon 4 inclusion/exclusion ratio.

Sample identifiers are shown.

(TIF)

Figure S2 MCF10A cells grown in rBM establish apicobasal

polarity and attenuate expression of VIM. (A) Apicobasal polarity

and luminal characteristics were confirmed with immunofluores-

cence. The a6-integrin (CD49f) is deposited at the basal surface

upon polarization and the expression of VIM is lost with this

transition (acini #1–4). Some acini (#5) fail to polarize and do not

deposit CD49f. These acini express VIM and grow larger with

diminished circularity. Scale bars represent 20 mm. (B) Acini

imaged with bright-field microscopy at low magnification (106).

Scale bar represents 100 mm. Quantitation of acini size and shape

with ImageJ software distinguishes polarized from non-polarized

acini (quantitation performed on images from 206magnification

are not shown). Normalization to controls allows comparison

across replicate experiments. For display purposes, the shape

factor was plotted such that values .1 indicate abnormal

polarization.

(TIF)

Figure S3 Loss of centrosome polarity in breast hyperplastic

lesions of BRCA1 mutation carriers. (A) Normal luminal structure

showing apical localization of the centrosomes (TUBG1) in a tissue

donor (unaffected, left panel) and in a BRCA1 mutation carrier

(right panel). Arrows mark properly, lumen-oriented centrosomes

in many cells. (B) Three hyperplastic lesions showing loss of

polarity in BRCA1 mutation carriers. Left panels show hematox-

ylin-eosin staining and the insets correspond to the middle and

right panels with results for TUBG1 staining. Loss of polarity is

evidenced by the identification of centrosome signals that are not

oriented towards the lumen and/or that are located on top of the

nuclei (arrows).

(TIF)

Figure S4 Stable depletion of centrosome components deter-

mines epithelial apicobasal polarization at an early time-point. (A)

Transduction of single or pooled shRNAs targeting the expression

of indicated proteins was identified resulting in detectable

depletions. Sequences for the indicated shRNA are given in Table

S5. (B) Representative bright-field images (low magnification, 206)

for adherent (day 6, plastic) and rBM (day 7, on-top) growth of

untreated and puromycin-resistant MCF10A cells transduced with

pLKO.1-nonhairpin, shRNA-AURKA, shRNA-BRCA1, shRNA-

HMMR, or shRNA-TPX2. Scale bars represent 100 mm. (C) Acini

architecture was quantified from bright-field images of cultures

treated as indicated at 1 week post-plating. For comparison

between experiments, all values were normalized to pLKO.1-

transduced cultures within experiments. Shape factor ((1/circu-

larity)2) values for single cells or small clusters are not plotted

(shRNA-AURKA). Asterisks and circles indicate significant differ-

ences (two-sided t test p,0.05 and p,0.005, respectively) from

controls (pLKO.1).

(TIF)

Figure S5 Transient depletion of centrosome components

determines epithelial apicobasal polarization at early and late

time-points. (A) Representative bright-field images (low magnifi-

cation, 56) for rBM (second week, embedded) growth of MCF10A

transduced with virus encoding pLKO.1-nonhairpin, or individual

(as indicated) or pooled shRNAs targeting the expression of

AURKA, BRCA1, RHAMM, or TPX2. Images are scaled

equivalently, with the scale bar representing 200 mm. (B) Acini

architecture was quantified from bright-field images (106
magnification) of cultures treated as indicated at 1 week post-

plating. For comparison between experiments, all values were

normalized to pLKO.1-transduced cultures within experiments.

Shape factor values for single cells or small clusters are not plotted

(shRNA-AURKA). Asterisks and circles indicate significant differ-

ences (two-sided t test p,0.05 and p,0.005, respectively) from

controls (pLKO.1). (C) Acini architecture was quantified from

bright-field images (106 magnification) of cultures treated as

indicated at 2 weeks post-plating.

(TIF)

Figure S6 Depletion of centrosome components alters the

expression profile of VIM and CD49f. In normal acini (control

and shRNA-TPX2), centrosomes are apically positioned (TUBG1),

CD49f is deposited at the basal surface, and VIM is lost. This

pattern is altered with depletion of BRCA1 or RHAMM. Acini

size and shape are reflective of polarization. Results are shown for

the nonhairpin pLKO.1 control, shRNA-AURKA (#3), shRNA-

BRCA1 (#34), shRNA-HMMR (#4), and shRNA-TPX2 (pooled)

assays.

(TIF)

Figure S7 AURKA and BRCA1 activity determine RHAMM

abundance. (A) AURKA and RHAMM are protected by

proteasome inhibition. Lysates of MCF10A cells exposed for 3 h

to DMSO or MG132 were immunoblotted for the indicated

proteins. (B) BRCA1 depletion protects RHAMM, but not

AURKA, from degradation. Lysates of MCF10A cells growing

in growth factor (GF)-reduced media exposed to MG132 or

depleted of BRCA1 were immunoblotted for the indicated

proteins. (C) Interplay between AURKA and BRCA1 activity

regulates RHAMM abundance. Lysates from MCF10A cultures

transduced with control vector pLKO.1, shRNA-AURKA, shRNA-

BRCA1, shRNA-HMMR, or shRNA-TPX2, or simultaneously with

shRNAs-AURKA/BRCA1, were immunoblotted for the indicated

proteins. shRNA-AURKA depletion reduces AURKA as well as

RHAMM and TPX2, both cell-cycle-regulated proteins (Figure

S8). shRNA-BRCA1 reduces BRCA1 and specifically increases

RHAMM, which is consistent with previous data [23] and a

putative role of BRCA1 in proteasome-mediated degradation of

RHAMM. shRNA-HMMR and -TPX2 reduce RHAMM and

TPX2 levels, respectively. Compared to single depletions,

simultaneous depletion of AURKA and BRCA1 normalizes

RHAMM levels but not those of TPX2.

(TIF)

Figure S8 Protein complexes during the cell cycle. (A) HeLa

cells were harvested at confluence (unsynchronized, Us) or

following synchronization with double thymidine (S), double

thymidine/nocodazole (G2/M), or release from these blocks for

3 and 5 h (S/G2 and M/G1, respectively). Synchronization was

confirmed by bright-field microscopy and FACS analysis. (B)

AURKA, RHAMM, and TPX2 show cell-cycle-regulated expres-

sion in whole-cell extracts (WCEs; antibodies are those used in the

rest of the study). (C) Examination of post-immunoprecipitation

fractions confirmed the efficiency of the assays. Lysates following

immunoprecipitation were loaded equivalently and analyzed by

immunoblot to determine efficacy. (D) Protein complexes are

dynamic during the cell cycle. Lysates following immunoprecip-

itation were loaded and analyzed by immunoblot. Arrows indicate

RHAMM species with retarded mobility potentially indicative of

phosphorylation. (E) As described above for AURKA, RHAMM,

and TPX2, pT703-RHAMM shows cell-cycle-regulated expres-

sion in WCEs. Lysates following immunoprecipitation were loaded

and analyzed by immunoblot with anti-pT703-RHAMM. Arrows
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show mobility consistent with pT703-RHAMM; the mobility of

lower bands in AURKA, BRCA1, and TPX2 immunoprecipita-

tions is consistent with total RHAMM.

(TIF)

Figure S9 Evaluation of pT703-RHAMM polyclonal antibody.

(A) Specificity of pT703-RHAMM antibody was confirmed by

immunoblot analysis. Inoculating peptide is shown. Lysates from

HeLa were loaded equivalently and probed with a positive control

anti-RHAMM antibody (originally named anti-IHABP). Prebleeds

and bleeds from two rabbits and affinity purified antibodies against

pT703 were tested by immunoblot. (B) Specificity of pT703-

RHAMM antibody was confirmed by immunoblot analysis

following shRNA-HMMR. Lysates from HeLa were loaded

equivalently. Reduction in pT703-RHAMM signal was revealed

following shRNA-mediated depletion of HMMR expression.

(TIF)

Figure S10 AURKA phosphorylates and regulates RHAMM

levels. (A) AURKA abundance determines RHAMM and pT703-

RHAMM levels. MCF10A cells were grown in GF-reduced media

to decrease endogenous levels of RHAMM. Lysates of MCF10A

cells transfected with GST-AURKA or transduced with shRNA-

AURKA were analyzed by immunoblot analysis and compared to

untreated (non-transfected and non-transduced, respectively).

Abundance of both total RHAMM and pT703-RHAMM was

altered by AURKA abundance. shRNA-AURKA reduces

RHAMM levels while GST-AURKA augments RHAMM levels,

consistent with the described reduction of BRCA1-mediated

ubiquitination by AURKA [52] and interplay between AURKA

and BRCA1 in regulating RHAMM abundance (Figure S7). (B)

AURKA inhibition decreases pT703-RHAMM and, to a lesser

extent, total RHAMM. Lysates of MCF10A treated with graded

concentrations of an AURKA inhibitor (see Materials and

Methods) were immunoblotted for the indicated proteins.

(TIF)

Figure S11 Expression profiles in mammary epithelial cells and in

early stages of breast carcinogenesis. (A) Profiles of AURKA, BRCA1,

HMMR, and TPX2 in nonmalignant human mammary epithelial

cells (immortalized clone HMT3522 S1, left panel; nonimmorta-

lized clone HMEC 184, right panel) across days 3, 5, and 7 (two

replicates for each time point are shown) in three-dimensional

cultures [59]. The graphs show results for all microarray probes of

the corresponding genes and p values of the lineal regression

analyses. (B) HMMR expression differences between histologically

normal (HN) tissues versus patient-matched atypical ductal

hyperplasia (ADH) and ductal carcinoma in situ (DCIS). The

graphs show results of two microarray probes (names shown at the

top) and the corresponding significance p values (two-sided t test).

(TIF)

Figure S12 Effect of concurrent BRCA1 depletion and

RHAMM over-expression in polarization. (A) MCF10A cells were

transduced with a shRNA targeting BRCA1 (#34) or control

(pLKO.1). Additionally, cells were transduced with, or without, a

vector (pLenti6.2) driving RHAMM expression. Multiplicity of

infection was kept at five for single and dual transductions. Lysates

were prepared 5 d post-transduction. (B) MCF10A cells, treated as

indicated, were seeded in rBM to undergo polarization. After 2

weeks culture, acini were imaged and area and shape values were

scored. Values were normalized to untreated controls.

(TIF)

Table S1 Variants typed in 5q34 to produce a NPL score

(affected only analysis) of 4.24 among BRCA1 mutation carrier

families.

(XLS)

Table S2 Estimates (per allele wHR) of modification of breast

cancer risk by HMMR rs299290 among BRCA1 mutation carriers.

(XLS)

Table S3 Association of rs299290-C with germline HMMR

over-expression.

(XLS)

Table S4 Genotypes of rs299290 and ER-tumor status in

BRCA1/2 mutation carriers.

(XLS)

Table S5 shRNA sequences used in this study.

(XLS)

Text S1 Supplementary Materials and Methods.

(DOC)
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(DOC)
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