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Multiple processes may contribute to motor skill acquisition, but it is thought that many of these processes require
sleep or the passage of long periods of time ranging from several hours to many days or weeks. Here we demonstrate
that within a timescale of minutes, two distinct fast-acting processes drive motor adaptation. One process responds
weakly to error but retains information well, whereas the other responds strongly but has poor retention. This two-
state learning system makes the surprising prediction of spontaneous recovery (or adaptation rebound) if error
feedback is clamped at zero following an adaptation-extinction training episode. We used a novel paradigm to
experimentally confirm this prediction in human motor learning of reaching, and we show that the interaction between
the learning processes in this simple two-state system provides a unifying explanation for several different, apparently
unrelated, phenomena in motor adaptation including savings, anterograde interference, spontaneous recovery, and
rapid unlearning. Our results suggest that motor adaptation depends on at least two distinct neural systems that have
different sensitivity to error and retain information at different rates.
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Introduction

Savings is a fundamental property of memory. It refers to
the ability of prior learning to speed subsequent relearning
even after behavioral manifestations of the prior learning
have been washed out. A typical experiment that demon-
strates savings has three parts. First, a novel response to a
stimulus is gradually learned over the course of many trials.
Next, this stimulus-response relationship is unlearned or
extinguished so that the stimulus no longer evokes the
learned response. Finally, the initially learned stimulus-
response relationship is relearned under the original learning
conditions. If savings is present, relearning will proceed more
quickly than initial learning.

Savings has been studied in several classical conditioning
[1] and operant conditioning paradigms [2] but until recently
had not been demonstrated in motor adaptation. Motor
adaptation is a type of learning in which motor commands
are altered to compensate for disturbances in the external
environment or in the motor system itself. A recent study of
eye saccade gain adaptation by Kojima et al. [3] elucidated
several properties of savings in motor adaptation. This study
showed that (1) savings can occur in a motor adaptation task,
(2) it can cause a sudden jump in performance if a block of
no-feedback (dark) trials is inserted between the extinction
and re-adaptation blocks, and (3) it can be washed out if a
block of baseline trials is inserted between the extinction and
re-adaptation blocks.

Current models of trial-to-trial motor adaptation cannot
account for these results. While these models have been
successfully used to predict motor responses to novel,
randomly generated disturbance sequences [4,5] and to assess
the patterns of generalization [6,7], these models all predict a
single time constant of adaptation. However, in addition to
savings, several other experimental observations suggest that

time constants of adaptation may increase or decrease from
baseline depending on the specifics of the training regimen.
One well-known effect is anterograde interference. This
refers to the finding that learning an initial motor adaptation
reduces not only the initial performance but also the time
constant for subsequently learning the opposite adaptation
[8–10]. Two other important observations are rapid de-
adaptation [10,11] and rapid downscaling [10], where fully or
partially unlearning a motor adaptation can be faster than
initial learning of this adaptation. In summary, current
models of trial-to-trial adaptation fail to account for the
effects of savings, spontaneous recovery, anterograde inter-
ference, rapid unlearning, and rapid downscaling.
To account for the results of their savings experiments,

Kojima et al. suggested a novel two-state model in which
distinct mechanisms specialized in increasing the gain of
saccades versus decreasing it [3]. This gain-specific model
successfully produced savings and washout of savings ob-
served by these authors. However, it failed to account for the
spontaneous recovery of the initially adapted state when
monkeys were held in darkness following the extinction trials
(allowing saccades to take place without error feedback). This
model is also unable to explain the phenomenon of
anterograde interference in which secondary learning is
slower than baseline.
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Saccade adaptation in monkeys [12–14] and humans
[15,16], as well as a host of motor adaptation paradigms
[17–20], depends on the cerebellum. In the cerebellum, motor
state and error information simultaneously arrive in two
structures: the cerebellar cortex and the cerebellar nuclei. We
wondered whether a two-state model in which each state
learned at a different rate, rather than in a different
direction, might be able to account for the full pattern of
savings these authors saw, and simultaneously explain the
effects of anterograde interference, rapid unlearning, and
rapid downscaling. Here we show this to be the case.

Results

Figure 1 shows simulations of the experimental paradigm
that demonstrated savings in saccade adaptation [3]. We
simulated the progression of motor output in this learn-
unlearn-relearn paradigm with three different models: (1) a
single-state, single time-constant model, (2) a two-state, gain-
specific model, and (3) a two-state, gain-independent, multi-
rate model. All of these models modify motor output on a
particular trial as a function of the current motor state and the
error experienced on that trial (see Materials and Methods).
The learning rules for these models are shown below:

ð1Þ Single StateModel :
xðnþ 1Þ ¼ A � xðnÞ þ B � eðnÞ
Bf .Bs;As .Af

ð2ÞTwo State; Gain� SpecificModel :
x1ðnþ 1Þ ¼ minð0; ½A � x1ðnÞ þ B � eðnÞ�Þ
x2ðnþ 1Þ ¼ maxð0; ½A � x2ðnÞ þ B � eðnÞ�Þ
Bf .Bs;As .Af

x ¼ x1 þ x2

ð3ÞTwo State; Gain� Independent; Multi� RateModel :
x1ðnþ 1Þ ¼ Af � x1ðnÞ þ Bf � eðnÞ
x2ðnþ 1Þ ¼ As � x2ðnÞ þ Bs � eðnÞ
Bf .Bs;As .Af x ¼ x1 þ x2

xðnÞ � Netmotor output on trial n
x1; x2 � Internal states that contribute to the net motor output
eðnÞ � Error on trial n
B � Learning rate
A � Retension f actor

In all these models error arises because there is a difference
between the motor output x(n) and the state of the environ-
ment f(n) such that: e(n)¼ f (n)� x(n). While a single-state system
cannot reproduce a motor output pattern that shows savings,
both the gain-specific model proposed by Kojima et al. and
our multi-rate model produce savings (Figure 1A and 1B).
Furthermore, both models predict decay in the amount of
savings if null trials are inserted before the learning block
(Figure 1C and 1D). The key to faster relearning in both two-
state models is that although net motor output is near zero at
the beginning of the relearning block, the internal states are
both non-zero. Because the internal states are different, both
systems’ responses to the learning stimulus are altered.
Relearning is faster than initial learning in the gain-specific
model because both the up and down states can contribute to
relearning whereas only the up state contributes to initial
learning. In the case of the multi-rate model, relearning is
faster than initial learning because when relearning starts, the

slow state is already biased towards relearning, making
relearning more dependent on the fast state compared to
initial learning.
Although the gain-specific and multi-rate models predict

similar patterns of behavior following extinction, their
internal states evolve quite differently. This suggests that
these models may make different predictions about the
pattern of motor output on other experimental paradigms.
We found that if the relearning phase of the learn-unlearn-
relearn experiment is replaced by a zero-error block, i.e., if
the error is clamped at zero following the unlearning block,
the gain-specific and multi-rate models can make very
different predictions about the evolution of motor output.
These predictions are shown in Figure 2. The gain-specific
model predicts that following the unlearning block, motor
output will remain at zero if error is clamped at zero. In
contrast, the multi-rate model predicts a rebound effect, or
spontaneous recovery, during this same period. Instead of
remaining at zero, predicted motor output during the zero-
error block transiently rebounds toward the motor output
during the initial learning block (Figure 2B). This produces an
apparent jump in performance when performance is meas-
ured at the end of the error clamp period (Figure 2D)—
something that Kojima et al. observed in their saccade
adaptation experiment following a period of darkness [3].
Interestingly, phenomena similar to the spontaneous recov-
ery produced by the multi-rate model have been observed in
classical conditioning experiments following extinction train-
ing in animals [21–23].
Inspection of the internal state dynamics of the multi-rate

model reveals that this phenomenon occurs because the fast
learning module rapidly decays to zero during the error-
clamp block, while the slow learning module decays more
gradually. The transient rebound occurs as the fast learning
module decays while the slow learning module is mostly
intact, and this rebound fades as the slow learning module
progressively decays. In a saccade adaptation paradigm where
lights are turned off, it is not possible to observe the errors
that the animal makes and therefore these transients cannot
be measured. However, we designed a different adaptation
paradigm that allowed us to clamp motor error at zero and
yet directly measure the transients of the motor output and
therefore test the predictions of our model.
We implemented the error-clamp paradigm in a force-field

adaptation experiment where individuals reached to a target
(see Materials and Methods). Human participants adapted to
a viscous-curl force field imposed on their hands by a robot
manipulandum. Like saccade adaptation, force-field adapta-
tion is also thought to depend on the cerebellum [19,20] and
is known to produce quick, robust, easily measured motor
learning [24]. We used a robotic arm to apply clockwise and
counterclockwise viscous-curl force fields [25] to induce
adaptation and de-adaptation in point-to-point goal-directed
voluntary reaching movements (see Materials and Methods).
In this experiment we also used the robot arm to create a
virtual force channel in order to clamp lateral errors to zero
on selected trials [26]. In these trials, perpendicular displace-
ment from a straight-line movement was held to less than 0.6
mm, limiting the size of perpendicular errors to very small
values compared to when the force channel was not applied.
We trained 14 individuals in one force field (where forces
pushed their hands perpendicular to the direction of motion)
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and then switched them to the opposite force field for a short
period. We then switched them again to error-clamp trials to
record the changes in lateral forces that these individuals
produced when lateral error was held near zero. As in the
simulations shown in Figure 2, the second field acted as a
washout on the first field so that reaching movements in the
channel started with near zero lateral force.

Individual participant data displayed in Figure 3 shows that
participants learned the initial force field well. Late in
training participants produced a pattern of lateral forces
that closely matched the ideal force pattern required to fully

compensate the applied force field. Although this pattern of
forces was unlearned in the second force-field block so that
the first error-clamp trial showed small or oppositely directed
forces, as predicted by the multi-rate model, the initially
learned force pattern reemerged by trials 12 and 15.
We quantified the extent of force-field adaptation during

force channel trials by regressing the force profile produced
orthogonal to the force channel onto the force profile
required to make the same straight-line movement in a
viscous-curl force field (see Materials and Methods). This
regression yielded a factor which estimated the fraction of

Figure 1. Simulations of Motor Adaptation Experiments That Show Savings

(A) Paradigm for basic savings experiment. This paradigm consists of four blocks: (1) a baseline period, (2) initial learning, (3) unlearning, and (4)
relearning. Note that adaptation stimulus for the unlearning block is opposite that used in learning blocks, and the number of trials in the unlearning
block is adjusted so that on this block’s last trial performance is at the baseline level.
(B and C) Model simulations of the experiment paradigm shown in (A). The first row (B) shows the raw results of these simulations, while the second row
(C) shows a direct comparison of simulated performance in the initial learning and relearning blocks. The different columns display simulation results
from the single-state, gain-specific, and multi-rate models, respectively. The single-state model fails to show savings (faster relearning), but the gain-
specific and multi-rate models show savings.
(D) Paradigm for savings experiment with washout. Note that this paradigm is similar to the paradigm shown in (A), except that a washout block of
variable length is inserted prior to the relearning block.
(E) The amount of savings found in simulation, as a function of the number of washout trials. The amount of savings is measured as the percent
improvement in performance on the 30th trial in the relearning block compared to the 30th trial in the initial learning block. The columns are the same
as in (B). The gain-specific and multi-rate models show similar washout of savings; however, in the single-state model there is no savings to wash out.
DOI: 10.1371/journal.pbio.0040179.g001
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the force field compensated in each error-clamp trial. The
force-field compensation was zero or negative during the first
few trials in the error-clamp block indicating complete
unlearning during the second force-field block. However,
force-field compensation rapidly rebounded toward the
initial adaptation in the error-clamp block independent of
the direction of initial learning (p , 0.0001 for all 14
participants taken together, p , 0.01 for each seven-
participant subgroup taken separately, both when compared
to the initial error-clamp trials and when compared to zero

lateral force (see Figure 3E). The rebound grew during the
first ten to 20 error-clamp trials and then gradually declined
toward zero. This rebound effect was predicted by the multi-
rate model but not the gain-specific model or the single-state
model as shown in Figure 3D. Furthermore, the time course
of the rebound—a rapid rise then a slow decline—was also
predicted by the multi-rate model.
These findings suggest that within minutes of training on

the adaptation task, multiple learning modules contribute
substantially to the process of force-field adaptation. In fact,

Figure 2. Simulations of Motor Adaptation in the Error-Clamp Paradigm

(A) Paradigm for simulated error-clamp experiment. This paradigm is similar to the savings paradigm shown in Figure 1A except that the relearning
block is replaced by an error-clamp block during which the error that drives adaptation is held at zero.
(B) Model simulations of the experiment paradigm shown in (A). The different columns display simulation results form the single-state, gain-specific,
and multi-rate models, respectively. The single-state and gain-specific models do not predict changes in motor output from baseline in the error-clamp
block, whereas the multi-rate model predicts a transient rebound of motor output in the error-clamp block. This rebound is in the direction of the motor
output displayed in the initial learning block, resulting in spontaneous recovery.
(C) Paradigm for the error-clamp/relearning experiment. Here a relearning block follows a shortened error-clamp block. This paradigm reproduces the
effect of jump-up facilitation seen by Kojima et al. following dark exposure. During dark exposure, monkeys made saccades but received no visual
feedback of saccade error. The absence of error feedback may be similar to the zero-error condition produced by the error-clamp.
(D) Model simulations of the experiment paradigm shown in (C). The columns are the same as in (B). The multi-rate model predicts that performance at
the start of the relearning block is already better than baseline. This jump-up in performance is caused by adaptation rebound in the error-clamp phase.
Kojima et al. showed that following a period of dark exposure (during which saccade gain was not measured) monkeys displayed an immediate jump-
up in performance at the start of the subsequent relearning block. This finding is predicted by the multi-rate model, but is not predicted by the single-
state or gain-specific models.
DOI: 10.1371/journal.pbio.0040179.g002
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Figure 3. Experimental Results from the Force-Field Learning Error-Clamp Paradigm

(A and B) Paradigms for simulated error-clamp experiment. These paradigms are the same as the paradigm shown in Figure 2A, except that here one
group (the NP group) of participants is exposed to an initial adaptation to a clockwise viscous-curl force field while the other group (the PN group) is
exposed to an initial adaptation in the opposite direction (counterclockwise).
(C) Example force trajectories during the course of this learning paradigm. Force trajectories from selected error-clamp trials for one participant in each
group are shown as red arrows with tips connected by dashed black lines. The blue line represents the force trajectory required to fully cancel the force
field applied during the initial learning block for each participant. The same trials are shown for each participant, and each trial is labeled by a block
identifier and the trial number within that block. For example, N97 is the 97th trial in the null-field practice block, A17 is the 17th trial in the initial
adaptation block, and F1 is the first trial in the force-channel (error-clamp) block. Since the adaptation requires the production of lateral forces, only
lateral forces are shown. Lateral forces (red arrows) in the baseline period are small and inconsistent in direction. However, during the initial adaptation
block these lateral forces grow with training so that they nearly cancel the applied force field. After the extinction block, the first trials in the error-clamp
block show a near-zero or negative pattern of lateral forces with respect to the forces displayed late in the initial adaptation block. However, by trials
12–15 in the error-clamp block, a small but consistent rebound of the pattern of lateral forces seen during initial adaptation emerges. This rebound
substantially fades away by trial 90 in the error-clamp block.
(D) The average time course of adaptive changes in the pattern of lateral forces. Data from both the PN and NP groups are averaged together. The
adaptation score corresponding to the force pattern displayed on a particular trial was assessed by computing a force-field compensation factor (see
Materials and Methods). In short, this force-field compensation factor measures the fraction of (initial adaptation) force field that would be
compensated by the pattern of lateral forces displayed on a particular trial by regressing the measured lateral force pattern onto the ideal pattern of
lateral forces required to fully compensate the force field. The transient rebound of motor output in the error-clamp block matches the rebound
predicted by the multi-rate model. The blue error bars represent experimental data (meanþ/� standard error of the mean.). The green line is the best-fit
multi-rate model, and the red and purple lines are the best-fit gain-specific and single-state models. The best-fit model parameters (with 95%
confidence intervals) for the multi-rate model were A1¼ 0.992 (0.990–0.994), B1¼ 0.02 (0.013–0.025), A2¼ 0.59 (0.43–0.76), and B2¼ 0.21 (0.10–0.35).
(E) Summary of results from NP and PN groups. The asterisks indicate significant difference in lateral forces from baseline. Both groups display
significant adaptation rebound by trials 10–20 of the error-clamp block compared to the initial error-clamp trials (p , 0.01 for both the NP and PN
groups taken separately, and p , 0.0001 for all participants taken together) and compared to baseline lateral force levels before learning (p , 0.01 for
the NP group, p , 0.001 for the PN group, and p , 0.0001 for all participants taken together).
NP, negative/positive group; PN, positive/negative group.
DOI: 10.1371/journal.pbio.0040179.g003
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the slow learning module accounts for more than half of the
total adaptation by the end of the first learning block,
suggesting that this module may play a significant role in even
short-term motor adaptation tasks.

It should be noted that if the gain-specific model is
expanded to allow asymmetric learning rates and forgetting
factors (see Supporting Information), it can in some cases
produce rebound. However, this rebound is quite different
from the spontaneous recovery produced by the multi-rate
model, because this rebound will always be in the direction of
the gain process with the slower forgetting factor rather than
in the direction to recover previous learning, as predicted by
the multi-rate model and displayed in our data (see Figure
3E).

The multi-rate model accounts for several other well-
known phenomena that have been observed in motor
adaptation (Figure 4). For example, studies have shown that
the time constant for an initial motor adaptation is faster
than the time constant for subsequent adaptation to the
oppositely directed adaptation stimulus [8–10]. This effect
has been termed anterograde interference (Figure 4A–C).
The single-state model and the gain-specific model are unable
to explain anterograde interference (see Supporting Infor-
mation for simulation results). The single-state model
predicts no effect of anterograde interference, while the
gain-specific model actually predicts that the time constant
for the second adaptation will be faster than that of the first.
However, the multi-rate model correctly predicts slower
learning of the second adaptation in the interference
paradigm. The multi-rate model predicts slower learning
because the slow learning module is initially biased against
learning the second adaptation.

Several studies have shown that when a motor adaptation is
learned then washed out, the rate of de-adaptation back to
baseline can be faster than the rate of initial adaptation
[10,11]. The multi-rate model not only explains this effect
(which is also predicted by the gain-specific model), but
explains why the apparent magnitude of this effect can vary
substantially from one paradigm to another (Figure 4D–F).
Our model predicts that the amount of facilitation in the
time constant for de-adaptation will be maximal after fairly
short adaptation blocks and then decline as the duration of
adaptation increases.

Finally, Davidson and Wolpert recently reported that the
time constant for adapting to a scaled down version of a
previously learned force-field adaptation can be even faster
than the rate of de-adaptation to baseline [10]. This effect can
also be explained by the multi-rate model (Figure 4G–I) but
not by the single-state or gain-specific models.

Our multi-rate model is a member of the general class of
multi-state single-input, single-output linear state-space
models. One important feature of this class is that multiple
realizations of the same input-output behavior are possible,
i.e., internal system architectures are not unique. Of
particular interest are the two equivalent system architec-
tures diagrammed in Figure 5. In the first representation, two
learning modules independently adapt from error and their
outputs are combined to produce changes in net motor
output. In the second representation, the two learning
modules are cascaded such that the fast module adapts
directly from error while the slow module adapts indirectly
via the output of the fast module. Because these representa-

tions can have identical input-output behavior, behavioral
experiments alone in animals or people with normally
functioning motor learning systems cannot distinguish them.
However, the combination of behavioral experiments with
neurophysiology and lesion studies may be able to extract the
neural architecture of this multi-rate system.
It should be noted that the models presented here are

written in terms of trial number with no explicit effect of
time. However, the decay terms in our model could account
for both trial-related decay and the average time-related
inter-trial decay. Because these models are written purely as
functions of trial number, they imply that the trial-to-trial
decay in motor memory is primarily related to the passage of
trials per se rather than to the passage of time during the
inter-trial intervals. We write the models in this way because
the studies that have looked at motor memory retention in
short-term motor adaptation have showed little change in
motor memory with the passage of time alone for periods up
to an hour, but significant memory decay when trials without
error feedback were applied [27,28]. Although this evidence
suggests that the trial-related decay is dominant, since we did
not explicitly test the effect of time on memory decay in our
models, we cannot rule out that it has some effect.

Discussion

Here we have presented evidence that short-term motor
adaptation is substantially influenced by two adaptive
processes with different learning rates and different capaci-
ties for retention. It is clear that at least part of this multi-rate
system is dependent on or contained within the cerebellum.
Patients with cerebellar lesions from a variety of causes
[15,17–20], as well as animals given cerebellar lesions [29],
show dramatic deficits in the rate of motor adaptation, but it
is unclear whether motor adaptation in these patients is
entirely absent or occurs at a markedly reduced rate
matching that of the slow module in our model. This suggests
that at least the fast learning module—if not both—is strongly
dependent on the cerebellum for normal function.
Medina et al. have shown that a coarse response to classical

conditioning of the eye-blink reflex develops in the cerebellar
interpositus nucleus in rabbits gradually over days of train-
ing, although the overall time course of the learning is much
faster [1]. Furthermore, the magnitude of this slowly devel-
oping response correlates with the amount of savings
(improved relearning) after the conditioned response has
been extinguished. Although the development of this
response occurs much more slowly than the slow component
of the response in our present data, the lag behind perform-
ance improvement and the relationship to savings suggest
that during eye-blink conditioning in rabbits, the cerebellar
nuclei may act very much like the slow learning module in
our model of motor adaptation; albeit with an even more
gradual response, while the cerebellar cortex acts like the fast
learning module. Interestingly, current lesion experiments in
the eye-blink reflex support the cascade model of adaptation
where error rapidly teaches the cerebellar cortex while the
cerebellar cortex slowly teaches the nucleus [30].
The learning modules from our model may also depend on

motor areas other than the cerebellum. For example, neural
recordings from motor cortex during a force-field adaptation
task in highly trained monkeys show distinct ‘‘memory cells’’
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despite evidence of behavioral extinction [31]. These neural
responses during extinction show that the cells fall into two
classes such that the sum of the contributions of the two
classes adds to zero, while each class predicts a different
pattern of force. The multi-rate model predicts that the
‘‘memory I’’ cells reported by these authors are a reflection of
the slow system; showing strong adaptive responses by the
end of initial training that are maintained during extinction.
In contrast, our model predicts that the ‘‘memory II’’ cells are

a reflection of the fast system, showing little or no adaptive
response by end of initial training but a strong response
during extinction (in order to compensate for the slow
system). Therefore, whether the modules that we see depend
on the cerebellum, motor areas in the cerebral cortex, both,
or even other cortical or subcortical structures, is at this
point unclear.
In fact, the fast and slow adaptive processes that we have

inferred from the data do not necessarily implicate separate

Figure 4. Simulations of Motor Adaptation with the Multi-Rate Model Explain a Variety of Previously Reported Results, Including Rapid Unlearning and

Rapid Downscaling

(A–C) Anterograde interference.
(D–F) Rapid unlearning.
(G–I) Rapid downscaling.
First column (A, D, and G): experiment paradigms. Second column (B, E, and H): Raw simulation results. Blue: initial adaptation. Red, green, and cyan:
secondary adaptation after 30, 60, or 120 trials of the initial adaptation, respectively. Third column (C, F, and I): Comparison of adaptation rates for initial
and secondary adaptations. Here the learning curves have been shifted so that they all begin at zero and scaled so that the desired performance level is
one. In the anterograde interference paradigm (A–C), the multi-rate model predicts that learning the opposite force field proceeds with a slower time
constant than initial learning; furthermore, this time constant gets even slower when number of trials in the initial learning block is increased. The multi-
rate model predicts that unlearning proceeds with a faster time constant than initial learning (E–F) and the time constant for downscaling is faster still
(H–I); however, the time constant for unlearning or downscaling returns to baseline when the number of trials in the initial learning block is increased. In
summary, the multi-rate model simultaneously explains the effects of anterograde interference, rapid unlearning, and rapid downscaling. Furthermore
this model predicts that anterograde interference will get stronger as the length of the initial adaptation period increases, but that rapid unlearning and
rapid downscaling will get weaker as the length of the initial adaptation period increases.
DOI: 10.1371/journal.pbio.0040179.g004
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neural systems, but might even be part of the adaptive
mechanisms of single synapses or single neurons. For
example, the probability of change in a synapse may strongly
depend on its prior history of stimulation, as modeled
recently by Fusi et al. [32] (see simulations of this model in
Supporting Information). Alternatively, a step change in a
stimulus’ properties may produce changes in firing rates of
single cells that are not step-like or single exponential, but
show adaptation with multiple timescales [33].

It is likely that the neural apparatus for motor adaptation
has functional modules with even more than two different
time courses. Here we examined short-term, single-session
motor adaptation, found evidence for two distinct time
courses, and showed that the properties of a simple linear
system with two time courses provides a single, unified
explanation for a wide variety of phenomena in short-term
motor adaptation. The phenomena include savings, ante-
rograde interference, spontaneous recovery, rapid unlearn-
ing, and rapid downscaling. However, studies of memory
consolidation during motor learning suggest that additional
processes with slower, even more gradual time courses may
play important roles during long-term motor learning.
Understanding the interplay between these different pro-
cesses will give us fundamental insights into understanding
motor memory formation.

Materials and Methods

Modeling. We used the learning rules for the single-state, gain-
specific, and multi-rate models shown in the main text along with the
error equations below to iteratively compute the time course of
adaptation for each model in each simulated experiment.

perturbation trials : eðnÞ ¼ f ðnÞ � xðnÞ
error � clamp trials : f ðnÞ ¼ xðnÞ?eðnÞ ¼ 0
eðnÞ � error on trial n
xðnÞ � adapted motor output on trial n
f ðnÞ � disturbance on trial n

For the simulations shown in Figures 1 and 2, the model

parameters were arbitrarily set at A ¼ 0.99 and B ¼ 0.013 for the
single-state and gain-specific models; and Af ¼ 0.92, As¼ 0.996, Bf ¼
0.03, and Bs¼0.004 for the multi-rate model. However, the qualitative
results that we describe here do not depend on these particular
parameter values; they hold as long as all parameters are positive, and
Bf is several-fold larger than Bs, and As is several times closer to one
than Af (see Supporting Information for an analysis of the effect
parameter variation for the gain-specific model). Each of the plots
showing washout of savings in Figure 1E display data derived from a
series of 301 simulations. The number of washout trials was varied
from 0 to 300, and the percent savings was computed for each
simulation as the performance improvement on trial 30 of the
relearning block versus trial 30 of the initial learning block.

In Figure 3D we find the parameter values for each model that best
fits the data in a least-squares sense, and we use these parameter
values for the multi-rate model to make the model predictions shown
in Figure 4. To compute the time constants displayed in Figure 4 we
fit the first 50 trials of the simulation results in the primary and
secondary adaptation blocks with a single exponential function and
extracted its time constant. We computed confidence intervals on the
best-fit parameter values by bootstrapping model fits to the data. We
made 1,000 different bootstrap estimates of the data mean, each by
averaging data from 14 randomly generated choices made from the
14-participant data pool with replacement. We fit the model to each
of these bootstrap estimates and used the 2.5 and 97.5 percentile
values of each parameter as the limits of the 95% confidence interval.

Participants. 14 healthy participants (mean age 24) without known
neurological impairment were recruited from the Johns Hopkins
Medical School community. All participants were right handed and
used their dominant hands. All participants gave informed consent
and the experimental protocols were approved by the Johns Hopkins
Institutional Review Board.

Task. We studied a variant of the standard force-field adaptation
paradigm [24]. Briefly, participants held the handle of a two-joint
manipulandum that could move in the horizontal plane. A small
round cursor (3 mm in diameter) indicated the participant’s hand
position and was displayed on a vertically oriented computer monitor
in front of the participant (refresh rate of 75 Hz). They reached to
circular targets 1 cm in diameter that were spaced 10 cm apart. The
manipulandum measured hand position, velocity, and force, and its
motors were used to apply forces to the hand, all at a sampling rate of
200 Hz.

Four trial types were used: null trials, force-channel trials,
clockwise curl-field trials, and counterclockwise curl-field trials. Null
trials were used for initial practice. During these trials the robot
motors were turned off. During force field trials, the motors were
used to produce forces on the hand that were proportional in
magnitude and perpendicular in direction to the velocity of hand
motion. The relationship between force (F) and velocity (V) vectors
was determined by the matrix CA ¼[0 13;-13 0] Ns/m via the
relationship F ¼ CA 3 V. We considered two kinds of fields: a
clockwise curl-field CA and a counterclockwise curl- field CB¼�CA. We
refer to these force fields as field A and field B, respectively. During
force channel trials, the robot motors were used to constrain
movements in a straight line toward the target by effectively
counteracting any motion perpendicular to the target direction.
This was achieved by applying a stiff one-dimensional spring (6 kN/m)
and damper (150 Ns/m) in the axis perpendicular to the target
direction. This error clamp was quite effective. In these trials,
perpendicular displacement from a straight line to the target was
held to less than 0.6 mm and averaged about 0.2 mm in magnitude.

The experiment was divided into short sets of 120 trials, each a
reach to a target (60 reaches in each direction). Sets generally took 5–
7 min to complete. There were two possible target locations 10 cm
apart in the body midline such that odd-numbered trials were
directed toward the body and even numbered trials were away from
it. The force channel was applied on all outward reach trials for the
entire experiment. The inward reach trials were performed under
several different conditions as follows: The first two sets were
performed in the null field with the robot motors disabled. The next
two sets were performed in the first force field. The fifth set consisted
of ten trials in the first force field, followed by 15 trials in the
opposite force field, and then 35 consecutive force channel trials. The
sixth and final set consisted of 60 consecutive force channel trials. In
sets 2–4, nine force-channel trials (about one in seven) were randomly
interspersed among the null or force field trials to measure the
progression of force-field adaptation. The 14 participants were
randomly assigned into two counter-balanced groups of seven, such
that one group, the negative/positive (NP) group, first experienced
the clockwise force field and then experienced the counterclockwise

Figure 5. Two Different Internal Realizations of a Linear, Two-State,

Multi-Rate System

Any input-output behavior achieved by one realization can be
duplicated by the other.
DOI: 10.1371/journal.pbio.0040179.g005
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force field, whereas the positive/negative (PN) group, first experi-
enced the counterclockwise force field and then experienced the
clockwise force field.

We instructed participants to ‘‘make quick movements to the
targets.’’ We instructed them that the reaction time was not
important—they could wait as long as they wished after target
appearance before starting each movement—but when ready, they
were to move in a rapid motion toward each target. The endpoint of
each movement was used as the starting point for the subsequent
movement, and movements were made in two target directions.

Analysis of force profiles. Since the environmental perturbations
applied during this experiment consisted of forces perpendicular to
the direction of motion, we focused our analysis on the lateral force
profiles that participants generated during movement. In general,
lateral force could reflect an adaptive compensation of expected
lateral force or an online corrective response to errors detected
during the course of movement. Specifically, we looked at the
progression of lateral force profiles during error-clamp trials in the
null, initial learning, and error-clamp blocks of the experiment.
During these trials, lateral errors were kept small (less than 0.5 mm),
so lateral force profiles essentially reflected adaptive compensation of
the force-field perturbations. Since full compensation of the force-
field perturbation on a particular trial required a lateral force profile
proportional to the speed profile on that same trial (and this speed
profile varied from one trial to another), we assessed the amount of
adaptation on each error-clamp trial by computing a force-field
compensation factor found by linear regression of the measured

lateral force profile onto the ideal force profile required for full
force-field compensation on that trial. This force-field compensation
factor was zero if these force profiles were uncorrelated and one if
these force profiles were identical to one another.

Supporting Information

Combined Supporting Information

Found at DOI: 10.1371/journal.pbio.0040179.sd001 (625 KB DOC).
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