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Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles.
Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a
closed-loop brain-machine interface (BMic) that uses multiple mathematical models to extract several motor
parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical
activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor
parameters, we observed that high BMic accuracy required recording from large neuronal ensembles. Continuous BMIic
operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using
visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not
move. Learning to operate the BMic was paralleled by functional reorganization in multiple cortical areas, suggesting

that the dynamic properties of the BMic were incorporated into motor and sensory cortical representations.

Introduction

Traumatic lesions of the central nervous system as well as
neurodegenerative disorders continue to inflict devastating,
and so far irreparable, motor deficits in large numbers of
patients. Every year, spinal cord injuries alone are responsible
for the occurrence of about 11,000 new cases of permanent
paralysis in the United States (Nobunaga et al. 1999). These
cases add up to an already sizeable population of patients,
estimated at 200,000 in the United States (Nobunaga et al.
1999), who have to cope with partial (as in the case of
paraplegics) or almost total (i.e., quadriplegia) body paralysis.

Until very recently, the main thrust of basic research on
restoration of motor functions after spinal cord injuries
focused on reconstructing the connectivity and functionality
of damaged nerve fibers (Ramon-Cueto et al. 1998; Uchida et
al. 2000; Bomze et al. 2001; Bunge 2001; Schwab 2002). While
this repair strategy has produced encouraging results, such as
limited restoration of limb mobility in animals, the goal of
restoring complex motor behaviors, such as reaching and
grasping, remains a major challenge.

Two decades ago, an alternative method for restoring
motor behaviors in severely paralyzed patients was proposed
(Schmidt 1980). This approach contends that direct interfaces
between spared cortical or subcortical motor centers and
artificial actuators could be employed to “bypass” spinal cord
injuries so that paralyzed patients could enact their voluntary
motor intentions. Initial experimental support for a corti-
cally driven bypass came from the studies conducted by Fetz
and collaborators (Fetz 1969; Fetz and Finocchio 1971, 1975;
Fetz and Baker 1973), who demonstrated that macaque
monkeys could learn to selectively adjust the firing rate of
individual cortical neurons to attain a particular level of cell
activity if provided with sensory feedback that signaled the
level of neuronal firing.

Recent studies in rodents (Chapin et al. 1999; Talwar et al.
2002), primates (Wessberg et al. 2000; Serruya et al. 2002;
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Taylor et al. 2002), and human subjects (Birbaumer 1999)
have rekindled interest in using brain-machine interfaces
(BMIs) as a potential alternative for spinal cord rehabilita-
tion. These experiments have demonstrated that animals can
learn to utilize their brain activity to control the displace-
ments of computer cursors (Serruya et al. 2002; Taylor et al.
2002) or one-dimensional (1D) to three-dimensional (3D)
movements of simple and elaborate robot arms (Chapin et al.
1999; Wessberg et al. 2000).

Despite these initial results, several fundamental issues
regarding the operation of BMIs, ranging from basic electro-
physiological issues to multiple engineering bottlenecks,
remain a matter of considerable debate (Nicolelis 2001,
2003; Donoghue 2002). For example, although most agree that
a BMI designed to reproduce arm/hand movements will
require long-term and stable recordings from cortical (or
subcortical) neurons through chronically implanted electrode
arrays (Nicolelis 2001, 2003; Donoghue 2002), there is
considerable disagreement on what type of brain signal
(single unit, multiunit, or field potentials [Pesaran et al. 2002])
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would be the optimal input for a such a device. Research
groups that propose the use of single-unit activity also
diverge on the assessments of whether small (eight to thirty)
(Serruya et al. 2002; Taylor et al. 2002) or substantially larger
(hundreds to thousands) numbers of single units may be
necessary to operate a BMI efficiently for many years
(Wessberg et al. 2000; Nicolelis 2001).

The issues of what signal to use and how much neuronal
tissue to sample are linked to the question of what type of
motor commands may be extracted from brain activity. Up to
now, animal studies have demonstrated the capability of
extracting a single motor parameter (e.g., hand trajectory,
position, direction of movement) from brain activity in order
to operate a BMI (Wessberg et al. 2000; Taylor et al. 2002).
While it is well known that cortical neuronal activity can
encode a variety of motor parameters (Fetz 1992; Messier and
Kalaska 2000; Johnson 2001), it is not clear which cortical
areas would provide the best input for a BMI designed to
restore multiple features of upper-limb function. A couple of
laboratories have focused on the primary motor cortex (M1)
(Serruya et al. 2002; Taylor et al. 2002), while another group
has selected the parietal cortex as the main input to a BMI
(Pesaran et al. 2002). Our previous studies have suggested
that, because of the distributed nature of motor planning in
the brain, neuronal samples from multiple frontal and
parietal cortical areas ought to be employed to operate such
devices (Wessberg et al. 2000; Nicolelis 2001, 2003; Donoghue
2002). Another important issue that has received little
attention is how the interposition of an artificial actuator
(such as a robot arm) in the control loop impacts the BMI and
the subject’s performance. Two previous studies have
reported that macaque monkeys learn to operate a closed-
loop BMI (BMIc) using visual feedback (Serruya et al. 2002;
Taylor et al. 2002), but the animals in these studies did not
control a real mechanical actuator.

Finally, more data are needed to evaluate the extent,
relevance, and behavioral meaning of cortical reorganization
that can be triggered by operation of a BMIc. A possibility of
such reorganization is supported by results in plasticity in M1
neurons in a force-field adaptation task (Li et al. 2001) and by
an initial report of changes in directional selectivity in a small
sample of M1 neurons during BMIc operation (Taylor et al.
2002).

BMI for Reaching and Grasping

In this paper, we present the results from a series of long-
term studies in macaque monkeys to address several of the
fundamental issues that currently shape the debate on BMIs.
In particular, we demonstrate for what we believe is the first
time the ability of the same ensemble of cells in closed-loop
mode to control two distinct movements of a robotic arm:
reaching and grasping. In addition, we demonstrate how the
monkeys learn to control a real robotic actuator using a
BMIc. We also report on how they overcome the robot
dynamics and return to the same level of performance
without modification of the task. Finally, we quantitatively
compare the contribution of neural populations in multiple
cortical areas needed to create this control and analyze
changes in these contributions during learning.

Results

Using the experimental apparatus illustrated in Figure 1A,
monkeys were trained in three different tasks: a reaching task
(task 1; Figure 1B), a hand-gripping task (task 2; Figure 1B),
and a reach-and-grasp task (task 3; Figure 1B).

We used multiple linear models, similar to those described
in our previous studies (Wessberg et al. 2000), to simulta-
neously extract a variety of motor parameters (i.e., hand
position [HPx, HPy, HPz], velocity [HVx, HVy, HVz], and
gripping force [GF]) and multiple muscle electromyograms
(EMGs) from the activity of cortical neural ensembles.
Although all these parameters were extracted in real time
on each session, only some of them were used to control the
BMIc, depending on each of the three tasks the monkeys had
to solve in a given day. In each recording session, an initial 30-
min period was used for training of these models. During this
period, monkeys used a hand-held pole either to move a
cursor on the screen or to change the cursor size by
application of gripping force to the pole. This period is
referred to as “pole control” mode. As the models converged
to an optimal performance, their coefficients were fixed and
the control of the cursor position (task 1 and 3) and/or size
(task 2 and 3) was obtained directly from the output of the
linear models. This period is referred to as “brain control”
mode. During brain control mode, animals initially produced
arm movements, but they soon realized that these were not
necessary and ceased to produce them for periods of time. To

Figure 1. Experimental Setup, Behavioral Tasks, Changes in Performance with Training, EMG Records during Pole and Brain Control, and Stability of
Model Predictions

(A) Behavioral setup and control loops, consisting of the data acquisition system, the computer running multiple linear models in real time, the
robot arm equipped with a gripper, and the visual display. The pole was equipped with a gripping force transducer. Robot position was
translated into cursor position on the screen, and feedback of the gripping force was provided by changing the cursor size.

(B) Schematics of three behavioral tasks. In task 1, the monkey’s goal was to move the cursor to a visual target (green) that appeared at random
locations on the screen. In task 2, the pole was stationary, and the monkey had to grasp a virtual object by developing a particular gripping force
instructed by two red circles displayed on the screen. Task 3 was a combination of tasks 1 and 2. The monkey had to move the cursor to the target
and then develop a gripping force necessary to grasp a virtual object.

(C-E) Behavioral performance for two monkeys in tasks 1-3. The percentage of correctly completed trials increased, while the time to conclude a
trial decreased with training. This was true for both pole (blue) and brain (red) control. Horizontal (green) lines indicate chance performance
obtained from the random walk model. The introduction of the robot arm into the BMIc control loop resulted in a drop in behavioral
performance. In approximately seven training sessions, the animal’s behavioral performance gradually returned to the initial values. This effect
took place during both pole and brain control.

(F) Stability of model predictions of hand velocity during long pole-control sessions (more than 50 min) for two monkeys performing task 1. The
first 10 min of performance were used to train the model, and then its coefficients were frozen. Model predictions remained highly accurate for
tens of minutes.

(G) Surface EMGs of arm muscles recorded in task 1 for pole control (left) and brain control without arm movements (right). Top plots show the
X-coordinate of the cursor; plots below display EMGs of wrist flexors, wrist extensors, and biceps. EMG modulations were absent in brain
control.

DOI: 10.1871/journal.pbio.0000042.g001
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40 60
Number of Neurons

Neuronal Ensembles Recorded in Pole Control
(A) Motor parameters (blue) and their prediction using linear models (red). From top to bottom: Hand position (HPx, HPy) and velocity (HVx,

HVy) during execution of task 1 and gripping force (GF) during execution of tasks 2 and 1.

(B) EMGs (blue) recorded in task 1 and their prediction (red).
(C) Contribution of neurons from the same ensemble to predictions of hand position (top), velocity (middle), and gripping force (bottom).

Contributions were measured as correlation coefficients (R) between the recorded motor parameters and their values predicted by the linear
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model. The color bar at the bottom indicates cortical areas where the neurons were located. Each neuron contributed to prediction of multiple
parameters of movements, and each area contained information about all parameters.

(D-F) Contribution of different cortical areas to model gredictions of hand position, velocity (task 1), and gripping force (task 2). For each area,
ND curves represent the average prediction accuracy (R”) as a function of number of neurons needed to attain it. Contributions of each cortical
area vary for different parameters. Typically, more than 30 randomly sampled neurons were required for an acceptable level of prediction.
(G-I) Comparison of the contribution of single units (blue) and multiunits (red) to predictions of hand position, velocity, and gripping force.
Single units and multiunits were taken from all cortical areas. Single units’ contribution exceeded that of multiunits by approximately 20%.

DOI: 10.1371/journal.pbio.0000042.g002

systematically study this phenomenon, we removed the pole
after the monkey ceased to produce arm movements in a
session. In each task, after initial training, a 6 DOF (degree-of-
freedom) robot arm equipped with a 1 DOF gripper was
included in the BMIc control loop. In all experiments, visual
feedback (i.e., cursor position/size) informed the animal about
the BMIc’s performance. When the robot was used, cursor
position indicated to the animal the X and Y coordinates of
the robot hand. The cursor size provided feedback of the
force measured by the sensors on the robot’s gripper. The
time delay between the output of the linear model and the
response of the robot was in the range of 60-90 ms.

For each task, training continued until the animal reached
high levels of performance in brain control mode. During this
learning period, both the animal’s and the BMIc’s perfor-
mance were assessed using several measures. Chance perfor-
mance was assessed using Monte Carlo simulations of random
walks. Contributions of individual neurons and the overall
contribution of different cortical areas to the prediction of
multiple motor signals were evaluated. In addition, changes
in directional tuning of the neurons that resulted from using
the BMIc were quantified.

Behavioral Performance during Long-Term
Operation of a BMic

Figure 1C-1E illustrates procedural motor learning as
animals interacted with the BMIc in each of the three tasks.
Improvement in behavioral performance with the BMIc was
indicated by a significant increase in the percentage of trials
completed successfully (Figure 1C-1E, top graphs) and by a
reduction in movement time (Figure 1C-1E, bottom graphs).
For task 1, both monkeys had some training in pole control of
task 1 (data not shown) several weeks before the series of
successive daily sessions illustrated in Figure 1C. For both
tasks 1 and 2, after a relatively small number of daily training
sessions, the monkeys’ performance in brain control reached
levels similar to those during pole control (Figure 1C and 1D).
For tasks 2 and 3, all behavioral data are plotted, given that in
both cases pole and brain controls were used since the first
day of training. Behavioral improvement was also observed in
task 3, which combined elements of tasks 1 and 2 (Figure 1E).
In all three tasks, the levels of performance attained during
brain control mode by far exceeded those predicted by a
random walk model (dashed and dotted lines in Figure 1C-
1E). Moreover, both animals could operate the BMIc without
any overt arm movement and muscle activity, as demon-
strated by the lack of EMG activity in several arm muscles
(Figure 1G). The ratios of the standard deviation of the
muscle activity during pole versus brain control for these
muscles were 14.67 (wrist flexors), 9.87 (wrist extensors), and
2.77 (biceps).

A key novel feature of this study was the introduction of
the robot equipped with a gripper into the control loop of
the BMIc after the animals had learned the task. Figure 1C
shows that because the intrinsic dynamics of the robot
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produced a lag between the pole movement and the cursor
movement, the monkeys’ performance initially declined. With
time, however, the performance rapidly returned to the same
levels as seen in previous training sessions (Figure 1C). It is
critical to note that the high accuracy in the control of the
robot was achieved by using velocity control in the BMIc,
which produced smooth predicted trajectories, and by the
fine tuning of robot controller parameters. These parameters
were fixed across sessions in both monkeys. The controller
sent velocity commands to the robot every 60-90 ms. Each of
these commands compensated for potential position errors
of the robot hand that resulted from previous commands.

In all experiments, the animals continuously received visual
feedback of their performance. Unlike previous results in owl
monkeys from experiments in which an open-loop BMI was
implemented (Wessberg and Nicolelis 2003), after the model
parameters were fixed, its predictions did not drift substan-
tially from initial best performance, even during 1-h record-
ings. As shown in the examples of Figure 1F, prediction of
grasping force (mean = SEM, R = 0.84 = 5 X107%) in monkey
1, as well as hand position (R =0.63 £ 3 X 107%) and velocity
(R =0.73 = 5 X 107°) in monkey 2, remained very stable
despite some transient fluctuations (slopes for black, magen-
ta, and cyan lines are, respectively, —2.16 X 1074 =5.15 X 1074,
and —1.1 X 107%). One possibility is that the presence of
continuous visual feedback helped to stabilize model per-
formance.

Which Motor Parameters Can Be Extracted in Real Time?

Throughout learning of all three behavioral tasks, pop-
ulations of neurons distributed in multiple frontal and
parietal cortical areas exhibited task-related modulations of
their firing rates. Using multiple linear models running in
parallel, several motor signals were extracted from those
modulations. To evaluate the performance of the models in
extracting different motor parameters, the models were first
trained using 15 min of pole control data and then
subsequent data were predicted. Figure 2A shows represen-
tative 1-min records of such predictions of hand position
(HPx, HPy), hand velocity (HVx, HVy), and gripping force
(GF). Figure 2B shows the model prediction of EMG activity.
In well-trained animals, the linear models accounted for up to
85% of the variance of hand position, 80% of hand velocity,
95% of gripping force, and 61% of multiple EMG activity.
These results show that elaborate hand movements, such as
the ones required to solve task 3, could be predicted from
brain activity using a BMIc with the simultaneous application
of multiple linear models.

What Cortical Areas to Sample? How Many Neurons to
Record From? What Type of Neuronal Signal to Use?
Several analytical tools were used to address these
fundamental questions. By measuring the correlation be-
tween neuronal firing and each of the predicted parameters
(Figure 2A), we observed that single neurons located in
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frontal and parietal areas contributed to real-time predic-
tions of all motor parameters analyzed (Figure 2C). Although
cortical areas are known to have functional specializations
(Wise et al. 1997; Burnod et al. 1999), our sample of M1, dorsal
premotor cortex (PMd), supplementary motor area (SMA),
posterior parietal cortex (PP), and primary somatosensory
cortex (S1) cells provided information, albeit at different
levels, for predictions of hand position, velocity, gripping
force, and multiple EMGs.

For each motor parameter analyzed, increasing the size of
the neuronal population improved the quality of prediction.
The effect of sample size on predictions was clearly shown
using neuron-dropping (ND) analysis (Figure 2D-2F). ND
plots indicate the number of neurons that are required to
achieve a particular level of model prediction for each
cortical area. Although all cortical areas surveyed contained
information about any given motor parameter, for each area,
different numbers of neurons were required to achieve the
same level of prediction. For example, the sample of Ml
neurons (33-56 cells) taken alone (Figure 2D-2F) was the best
predictor for all motor variables (73% of the variance for
hand position, 66% for velocity, 83% for gripping force). The
sample of SMA neurons (16-19 cells) produced high
predictions of hand position (51%) and velocity (51%), but
poor prediction of gripping force (19%). The activity of PMd
(64 cells) or S1 (21-39 cells) ensembles predicted hand
position (48% for both PMd and S1) and velocity (46% for
PMd and 35% for S1) reasonably well, but yielded lower
predictions of GF (29% for PMd neurons and 15% for S1).
Meanwhile, the sample from PP (63-64 cells) yielded very
accurate predictions of gripping force (73%) and hand
velocity (52%), but not hand position (25%). Ensemble
predictions of gripping force in most cases were more
accurate than those obtained from the same population for
hand position and velocity. In addition, the ND analysis
revealed that predictions of any motor parameter based on
combined neural ensemble activity were far superior to those
obtained based only on the mean contribution of single
neurons.

Another interesting finding emerged from the comparison
of the contribution of single-unit versus multiunit activity to
the performance of the linear models. Overall, up to 90 single
units and 95 multiunits were simultaneously recorded in
monkey 1 and 75 single units and 175 multiunits in monkey 2.
The cell population was stable not only during the length of
the recording sessions but across sessions. The vast majority
of the population remained stable for several weeks and, in
some cases, months (Nicolelis et al. 2003).

Figure 2G-2I shows that the linear predictions of hand
position, velocity, and grasping force were somewhat better
when single units were used (by 17%, 20%, and 17%,
respectively). That difference could be compensated by
increasing the number of channels. For example, as seen in
Figure 2G, around 30 additional multiunits compensate for
the difference in prediction of hand position provided by 20
single units. That difference was, however, not critical, as the
animals could still maintain high levels of BMI performance
in all tasks using multiunit activity only. Thus, in contrast to
previous studies (Serruya et al. 2002; Taylor et al. 2002) that
dealt with fewer motor parameters and a simpler task, we
observed that large neuronal samples were needed to achieve
a high level of real-time prediction of one or more motor
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parameters and, consequently, high behavioral proficiency in
operating the BMIc.

Functional Cortical Reorganization during
Operation of BMIc

The achievement of high proficiency in the operation of
the BMIc by the monkeys was consistent with procedural
motor learning. Since cortical ensemble recordings were
obtained during behavioral training in all three tasks, it was
possible to examine the neurophysiological correlates of this
learning process. Both short (within a recording session) and
long-term (across recording sessions) physiological modifica-
tions took place.

Long-term functional changes in multiple cortical areas
were evident in both animals. For instance, the average
contribution of single neurons to model performance
increased with learning. Figure 3A shows changes in the
contribution of single cortical neurons (measured in terms of
correlation coefficient, R, color-coded, where blue shows low
R; red, high R) from five cortical areas (PMd, M1, S1, SMA,
and M1 ipsilateral) to the linear model that predicted hand
position in task 1. Data from 42 recording sessions are shown.
In these sessions, predictions of hand position (HPx, HPy)
were used to control the cursor on the screen. By the end of
the training, very accurate predictions of hand position and
velocity were obtained (mean R = SEM; HPx = 0.75 = 0.04,
HPy = 0.72 * 0.04, HVx = 0.70 = 0.03, and HVy = 0.71 *
0.02). These high values were reached through a significant
increase in contribution of individual neurons to the linear
model. When the mean contribution of single neurons was
plotted as a function of their cortical area location, differ-
ences across cortical areas were found (Figure 3B-3E). The
change was higher in SMA (Figure 3E; R =0.81, slope =0.01, p
< 0.001) than in PMd (Figure 3B; R = 0.81, slope =1 X 107, p
< 0.001), S1 (Figure 3D; R = 0.67, slope =4 X 107>, p < 0.001),
and M1 (Figure 3C; R = 0.50, slope =3 X 107>, p < 0.001). Note
that from the beginning of training, M1 neurons (Figure 3C)
provided the highest mean contribution. By the end of 42
sessions, however, the mean contribution of neurons located
in other cortical areas (e.g., SMA, PMd, and S1) was as high as
that of M1. It is noteworthy that the significant enhancement
in contribution occurred for the model predicting hand
position (average of all cortical areas, R = 0.80, slope = 4 X
1073, p < 0.001), but not the one predicting hand velocity (R =
0.05, slope = 2.2 X 107, This selectivity coincided with the
use of a position model in the BMIc during these 42 sessions.
Thus, long-term training with the BMIc using a particular
model could result in selective enhancement of the mean
contribution of neurons to that model, but not the others.

Changes in Neuronal Direction Tuning during
Operation of a BMIc

As animals learned to operate the BMlIc, we also observed
short-term changes in neuronal directional tuning, within a
single recording session, after switching the BMIc mode of
operation from pole to brain control. Directional tuning
curves (DTCs) reflected dependency of the neuronal firing
rate on movement direction of either the pole or the cursor.
DTCs were normalized by dividing average firing rates for
particular movement directions by the standard deviation of
the whole firing rate record and then subtracting the DTC
mean. Using that normalization, changes in firing rate with
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Figure 3. Long-Term Functional Changes in Multiple Cortical Areas
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(A) Color-coded (red shows high values; blue, low values) representation of individual contributions measured as the correlation coefficient (R)
of neurons to linear model predictions of hand position for 42 training sessions. The average contribution steadily increased with training. The
bar on the left indicates cortical location of the neurons.

(B-E) Average contribution of neurons located in different cortical areas (PMd, M1, S1, and SMA, respectively) to hand position prediction
during 42 recording sessions.

(F) Average contribution for the whole ensemble to hand position prediction versus hand velocity predictions. A linear increase in contribution

was observed only for predictions of hand position.
DOI: 10.1371/journal.pbio.0000042.g003

movement direction were compared with the overall varia-
tion of firing rate. Average directional tuning of neural
ensembles (DTE) was also assessed, and the spread of the
preferred tuning directions was evaluated as the ensemble
average of the angles between preferred directions in pairs of
neurons. Color-coded population histograms (Figure 4A-4D)
displayed the DTGs of all recorded neurons. Polar plots
(magenta figures in Figure 4A-4D) showed the DTE and
preferred direction spread. Figure 4A-4D shows that DTCs
and DTEs for the same neural ensemble had distinct features
during pole control (Figure 4A), during brain control with the
presence of arm movements (Figure 4B and 4D), and during
brain control without arm movements (Figure 4C). Even if the
animal was still making arm movements after switching to
brain control and direction tuning was calculated in relation
to pole movements (compare Figure 4A with 4D), DTC and
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DTE changed significantly when compared to curves obtained
during pole control (R = 0.57 using pole movements as a
reference direction, R = 0.70 using cursor movements as a
reference). The changes in DTC and DTE became greater as
the animal ceased to produce arm movements in brain
control (Figure 4C) (R = 0.48). Notice, however, that the
pattern for brain control without arm movements (Figure 4C)
was also distinct from that for brain control with arm
movements (Figure 4B) (R = 0.57). These findings suggest that
both the cursor and pole movements influenced the
definition of directional tuning profiles in multiple cortical
areas.

After the mode of operation was switched to brain control,
pole and cursor movements became dissociated. Further, as
animals started controlling the BMIc without producing overt
hand movements, directional tuning primarily reflected
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Figure 4. Directional Tuning in Frontoparietal Ensemble during Different Modes of Operation in Task 1

(A-D) Directional tuning during pole control (A), brain control with arm movements (tuning assessed from cursor movements) (B), brain control
without arm movements (tuning assessed from cursor movements) (C), and brain control with arm movements (tuning assessed from pole
movements) (D). In each of the color-coded diagrams (red shows high values and blue low values; see color scale), the rows depict normalized
directional tuning for individual cells. Because of the high directional tuning values of some cells (e.g., that shown in [H]), a color scale limit was
set at 0.3 to allow color representation of the largest possible number of cells. Each tuning curve contains eight points that have been
interpolated for visual clarity. Correspondence of tuning patterns under different conditions has been quantified using correlation coefficients
(shown near lines connecting the diagrams). The highest correspondence was between tuning during pole control and brain control with arm
movements. A much less similar pattern of direction tuning emerged during brain control without arm movements. Polar plots near each
diagram show average directional tuning for the whole neural ensemble recorded. They indicate an average decrease in tuning strength and
shifts in the preferred direction of tuning as the operation mode was switched from pole to brain control. Spread of preferred directions (90°
corresponds to uniformly random distribution) is indicated near each polar plot.

(E-G) Scatterplots comparing DTD (maximum minus minimum values of tuning curves) during pole control versus brain control with and
without arm movements. DTD during brain control was consistently lower than during pole control. This effect was particularly evident during
brain control without arm movements.

(H-J) Changes in directional tuning for individual neurons under different conditions. Blue shows pole control; red, brain control with arm
movements (tuning assessed from pole movements); and green, brain control without arm movements. The first illustrated cell (H) was tuned
only when the monkey moved its arm, more so during pole control. The second cell (I) had similar tuning during all modes of operation, but
tuning depth was the highest for pole control and the lowest for brain control without arm movements. The third cell (J) was better tuned during

brain control.

DOI: 10.1871/journal.pbio.0000042.g004

cursor movements. Interestingly, during the transition from
pole to brain control, directional tuning depth (DTD) was
reduced for most cells. Figure 4E-4G shows this effect by
comparing the DTD in individual neurons during pole
control (Y axis of Figure 4E-4G) and brain control (X axis).
Notice that the reduction in tuning depth was more
pronounced when no arm movements were produced during
brain control (Figure 4G). Reduction in directional tuning
during brain control with no movements characterized 68%
of the sampled neurons and included neurons from all
cortical areas (see color dots in Figure 4E-4G and examples of
Figure 4H and 4I). A small percentage of neurons (14%) did
not show such change. Perhaps more surprisingly, a fraction
of neurons (18%) enhanced their directional tuning during
the switch from pole to brain control (see Figure 4]). These
neurons correspond to the dots that are located to the right
of the main diagonal in Figure 4E-4G.

Operating the BMIc without making movements was
characterized by an appearance of peculiar patterns of
directional tuning at the population level. Figure 5A and
5C displays the evolution of DTC and DTE for the same
neural ensemble during four task 1 sessions with the robot in
the loop. Whereas in each case DTCs during brain control
resembled those in pole control, they evolved toward a more
organized distribution. Although certain diversity in DTCs
remained, clear groups of neurons sharing similar DTCs
appeared as a result of training (Figure 5C). Quantitatively,
this effect was manifested by a decrease in the spread of
preferred directions. This effect was also evident in the polar
plots showing population-average tuning (i.e., DTE). The DTE
became progressively sharper and rotated clockwise.
Throughout the four sessions depicted in Figure 5, tuning
depth remained higher during pole than brain control
operation of the BMIc (Figure 5B).

Further analysis revealed that significant changes in direc-
tional tuning also occurred within a single recording session
during brain control (Figure 5D). The session illustrated in
Figure 5D was characterized by a gradual improvement in
behavioral performance during brain control without arm
movements, as evident from measurements made every 5 min
(Figure 5E). The population histograms of Figure 5D show
that the distribution of DTCs, although variable, became on
average tighter across all cortical areas, defining a vertical
band across the population histogram. This tightening was

PLoS Biology | http://biology.plosjournals.org

manifested by a decrease in the spread of preferred
directions (Figure 5F). Moreover, average tuning depth
gradually increased (Figure 5G), but remained lower than
that observed during pole control.

Similarity of DTCs during brain control indicated that
particular movement directions were associated with simul-
taneous increases in activity in many neurons; i.e., firing rates
of these neurons became more correlated. Indeed, we found
increases in broad correlation (100 ms time window) in
neuronal firing within and between cortical areas. Thus,
during the transition from pole to brain control in task 1, the
average correlated firing between pairs of cortical neurons,
measured in terms of correlation coefficient (mean * SEM),
increased from 0.02 = 1 X 107" t0 0.06 = 2 X 107*, a 3-fold
rise that was highly significant (Wilcoxon signed rank test, p <
0.0001). All cortical areas tested (M1, PMD, SMA, S1, and M1
ipsilateral) showed increases in correlated firing. The highest
within-area increases from pole to brain control were
observed in M1 (Agpin-pole = 0.07), S1 (Agrain-pole = 0.05),
and PMd (Agprain-pole = 0.03). The highest between-area
increases were observed between M1-S1 (Agrain-pole = 0.06,
MI1-PMd (Agpain-pote = 0.04), PMd-S1 (Agrain-pote = 0.04), M1-
SMA (ABrain-Pole = 002)5 and Mlcontra_M]ipsi (ABrain-Pole =
0.02).

Changes in average firing rates of the neurons during
switching from pole to brain control were insubstantial.
Firing rates of individual cells ranged from 0.1 to 40 spikes/s
(8 = 8 spikesls; mean * SD). After the mode was switched to
brain control and the monkey continued to move the arm,
firing rates increased on average by 4% from pole-control
level. When the monkey controlled the BMI without moving
the arm, the average neuronal firing rates decreased 2.5%
from pole-control level.

Real-Time Prediction of Gripping Force

In addition to reproducing hand trajectories with great
accuracy, linear models also allowed the reconstruction of
fine variations in gripping force produced by both monkeys
in tasks 2 and 3. Figure 6A shows that during execution of
task 2, most of the recorded cortical neurons contained
information about gripping force. In this figure, normal-
ization was achieved by dividing the firing rate of each
individual neuron by its standard deviation. In this way,
force-related modulations are expressed relative to the
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Figure 5. Plasticity of Directional Tuning during Training in Brain Control without Arm Movements

Conventions are as in Figure 4.

(A) Directional tuning profiles during four sessions in pole control (task 1). Percentages of correctly performed trials are indicated for each
session.

(B) Scatterplots comparing directional tuning during pole versus brain control for the same sessions. For each day, DTD was on average higher in
pole control.

(C) Directional tuning during brain control for the same sessions as in (A). Note the emergence of a population pattern in which a group of
neurons (with some exceptions) exhibits a similar preferred direction. This is manifested by a decrease in the spread of preferred directions
(shown near polar plots). Notice also a gradual rotation of the population preferred direction (see polar plots) with training.

(D) Gradual changes in DTE during one representative session of brain control without arm movements. This 60-min session was split into 5-min

periods, five of which are shown.

(E) Improvement in behavioral performance during a single session (same as in [D]) .

(F) Decrease in the spread of preferred directions during that session.

(G) Increase in average tuning depth during the same session.
DOI: 10.1371/journal.pbio.0000042.g005

overall variability of the neuron’s firing rate. Both monkeys
mastered task 2 in seven to eight sessions. Figure 6B displays
the evolution of the average contribution of neurons from
different areas of monkey 1 to model predictions during this
period. Contribution of contralateral M1 (R = 0.77, slope =
0.02, p < 0.05) and S1 (R = 0.85, slope = 0.02, p < 0.002)
increased significantly, while that of PMd (R = 0.19, slope = 2
X 1072, SMA (R = 0.34, slope = 0.01), and ipsilateral M1 (R =
0.38, slope = —0.01) did not change substantially. For the
whole ensemble combined, there was a significant increase in
contribution in both monkey 1 (R = 0.95, slope = 0.02, p <
0.001) and monkey 2 (R = 0.54, slope = 0.01, p < 0.05). By
comparing Figure 3B-3F and Figure 6B, we can see that while
M1 and S1 neurons showed changes during both tasks 1 and 2,
PMd and SMA neurons showed changes in task 1, but not in
task 2. This may reflect the greater involvement of these
cortical areas in learning visuomotor spatial relationships
than in the production of muscle force.

Switching from pole to brain control did not affect
neuronal firing rate correlations in task 2. This could be
related to saturation of this parameter because the average
firing rate correlation observed during pole control when
monkeys performed task 2 (0.056) was already higher than
that observed during task 1 (0.022, p < 0.001, Wilcoxon rank
sum test).

Using a BMIc to Reach and Grasp Virtual Objects

Our experiments demonstrated, to our knowledge for the
first time, that monkeys can learn to control a BMIc to
produce a combination of reaching and grasping movements
to locate and grasp virtual objects. The major challenge in
task 3 was to simultaneously predict hand position and
gripping force using the activity recorded from the same
neuronal ensemble. This problem could not be reduced to
predicting only hand position as in task 1 or gripping force in
task 2, because the animal had to sequentially reach and grasp
the target.

The DTD of cortical neurons, measured during pole
control, increased almost linearly during the learning of task
3 (Figure 6C). Although this effect was significant in all
cortical areas tested, its magnitude varied across areas. The
most prominent increase in DTD was observed in M1 (red
dots in Figure 6C; R = 0.81, slope = 0.02). Neurons in S1
(green dots in Figure 6C; R =0.82, slope = 0.02) and ipsilateral
M1 (magenta dots in Figure 6C; R = 0.81, slope = 0.02)
exhibited the next largest increase. Relatively smaller DTD
increases were observed in PP (cyan dots in Figure 6C; R =
0.73, slope = 0.01), SMA (black dots in Figure 6C; R = 0.63,
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slope=0.01), and PMd (blue dots in Figure 6C; R =0.51, slope
=0.01). Similar to task 1, tuning depth was higher during pole
control than during brain control. As in task 1, the DTC and
DTE patterns changed during training (data not shown).
Improvements in model performance occurred as well.
Figure 6D and 6E show the evolution in accuracy of real-
time predictions of hand position, velocity, and gripping
force during 14 sessions for both monkeys. During this
period, real-time predictions for both hand position and
velocity improved with training, while predictions of gripping
force remained high and stable in two monkeys (monkey 1,
mean * SD, R =0.86 = 0.04; monkey 2, R = 0.79 = 0.03).

The monkeys’ performance in brain control in task 3
approximated that during pole control, with characteristic
robot displacement (reach) followed by force increase (grasp).
Figure 6F and FG shows several representative examples of
reaching and grasping during pole and brain control in task 3
by monkey 1. Hand position (X, Y) and gripping force (F)
records are shown. In the display of hand trajectories, the size
of the disc at the end of each hand movement shows the
gripping force produced by the monkey (Figure 6F) or by the
BMlIc (Figure 6G) to grasp a virtual object. The reach (r) and
grasp (g) phases are clearly separated, demonstrating that the
monkeys could use the same sample of neurons to produce
distinct motor outputs at different moments in time. Thus,
during the reaching phase, X and Y changed, while F
remained relatively stable. However, as the monkey got closer
to the virtual object, F started to increase, while X and Y
stabilized to maintain the cursor over the virtual object. Thus,
our goal to train the monkey to reproduce coupled sequences
of reach-and-grasp movements using the BMIc was accom-
plished.

Discussion

Reliable, long-term operation of a BMIc was achieved by
extracting multiple motor parameters (i.e., hand position,
hand velocity, and gripping force) from the simultaneously
recorded activity of frontopariental neural ensembles. Ma-
caque monkeys learned to use the BMIc to reach and grasp
virtual objects with a robot even in the absence of overt arm
movements. Accurate performance was possible because
large populations of neurons from multiple cortical areas
were sampled. Thus, the present study shows that large
ensembles are preferable for efficient operation of a BML
This conclusion is consistent with the notion that motor
programming and execution are represented in a highly
distributed fashion across frontal and parietal areas and that
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Figure 6. Ensemble Encoding of Gripping Force, Plasticity of Directional Tuning, and Neuronal Contribution to Model Performance during Learning to
Control the BMIc for Reaching and Grasping

(A) Perievent time histograms (PETHs) in task 2 for the neuronal population sampled in monkey 1. The plots on top are color-coded (red shows
high values; blue, low values). Each horizontal row represents a PETH for a single-neuron or multiunit activity. PETHs have been normalized by
subtracting the mean and then dividing by the standard deviation. PETHs are aligned on the gripping force onset (crossing a threshold). Plots at
the bottom show the corresponding average traces of gripping force. Note the general similarity of PETHs in pole (left) and brain (right) control
in this relatively easy task. Cortical location of neurons is indicated by the bar on the top left. Note the distinct pattern of activation for different
areas.
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(B) Changes in the mean contribution of neurons from different cortical areas to model predictions during training of monkey 1 in task 2.
(C) Increases in directional tuning for six cortical areas during training in pole control in task 3.
(D and E) Increases in neuronal contribution to linear models predicting hand position (blue), hand velocity (red), and gripping force (black)

during learning task 3 in both monkeys.

(F and G) Representative robot trajectories and gripping force profiles in an advanced stage of training in task 3 during both pole and brain
control. The bottom graphs show trajectories and the amount of the gripping force developed during grasping each virtual object. The dotted
vertical lines in the panels indicate the end of reach phase and the beginning of grasp phase. Note that during both modes of BMIc operation,
the patterns of reaching and grasping movements (displacement followed by force increase) were preserved.

DOI: 10.1371/journal.pbio.0000042.g006

each of these areas contains neurons that represent multiple
motor parameters. We suggest that, in principle, any of these
areas could be used to operate a BMI, provided that a large
enough neuronal sample was obtained. While analysis of ND
curves (see Figure 2D-2F) indicates that a significant sample
of M1 neurons consistently provides the best predictions of
all motor parameters analyzed, neurons in areas such as SMA,
S1, PMd, and PP contribute to BMI performance as well.

Our argument for using large neuronal samples is also
supported by the fact that some neurons can be lost during
chronic recordings, either due to electrode malfunction,
modification of electrode tip properties, or simple cell death.
Then, a BMI that relies on only very small samples of neurons
(e.g., 8-30 cells) (Serruya et al. 2002; Taylor et al. 2002), all
derived from a single cortical area, would not be able to
provide a broad variety of motor outputs, handle changes in
cortical properties, or cope with alterations in the neuronal
sample over time.

Another important finding of this study is that accurate
real-time prediction of all motor parameters as well as a high
level of BMI control can be obtained from multiunit signals.
This observation is essential because it eliminates the need to
develop elaborate real-time spike-sorting algorithms, a major
technological challenge, for the design of a future cortical
neuroprosthesis for clinical applications.

Our experiments also demonstrate that the initial intro-
duction of a mechanical device, such as the robot arm, in the
control loop of a BMIc significantly impacts learning and task
performance. After the robot was introduced in the control
loop, the monkey had to adjust to the dynamics of this
artificial actuator. As a result, there was an immediate drop in
performance (see Figure 3G). With further training, however,
the animals were able to overcome the difficulties. Thus, the
simple utilization of the output of a real-time model to move
a cursor on a computer screen (Serruya et al. 2002; Taylor et
al. 2002) does not fully test the limitations and challenges
involved in operating a clinically relevant BMI. Instead, such
testing must include the incorporation in the apparatus of
the mechanical actuator designed to enact the subject’s motor
intentions and training the subject to operate it.

As was proposed recently (Nicolelis and Ribeiro 2002),
multisite, multielectrode recordings (Nicolelis et al. 2003) also
allowed us to quantify neurophysiological modifications
occurring in cortical networks, as animals learned motor
tasks of different complexity. At a single-neuron level, one
modification observed was a reduction in the strength of
directional tuning as animals switched from pole to brain
control of the BMI, an effect that reached its maximum as
animals ceased to produce overt arm movements. This
finding touches directly on the ongoing debate of two
opposing views of what the motor cortex encodes (Mussa-
Ivaldi 1988; Georgopoulos et al. 1989; Kakei et al. 1999;
Todorov 2000; Johnson et al. 2001; Scott et el. 2001). At the
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first glance, the reduction in tuning depth in the absence of
arm movements could be interpreted as providing support to
the notion that directional tuning in the motor cortex is
highly influenced by movement dynamics. Thus, the elimi-
nation of proprioceptive feedback during brain control could
explain the significant reduction in directional tuning.
However, a smaller but significant decrease in directional
tuning was also observed during brain control while animals
still used their hands to move the pole. This suggests that
directional tuning reflects neither movement dynamics nor
abstract motor goals alone, but rather their combination.
Additional findings support this contention. For example, a
small fraction of M1 and S1 neurons became better direc-
tionally tuned when the monkey did not make hand move-
ments during brain control (see Figure 4Ba-4Bd and Figure
5G). Moreover, during brain control there was a significant
increase in pairwise-correlated firing and a tendency for
groups of neurons to exhibit rather similar DTCs (see Figures
4 and b5). Increases in tuning depth accompanied improve-
ments in performance during brain control, although values
observed during pole control were never reached (see Figure
5E and 5G). All together, these physiological changes suggest
that as animals learn to operate the BMI during brain control,
visual feedback signals representing the goal of movement,
rather than information about arm movements per se,
become the main guiding signal to the cortical neurons that
drive the BMIc. Thus, we hypothesize that, as monkeys learn
to formulate a much more abstract strategy to achieve the
goal of moving the cursor to a target, without moving their
own arms, the dynamics of the robot arm (reflected by the
cursor movements) become incorporated into multiple
cortical representations. In other words, we propose that
the gradual increase in behavioral performance during brain
control of the BMI emerged as a consequence of a plastic
reorganization whose main outcome was the assimilation of
the dynamics of an artificial actuator into the physiological
properties of frontoparietal neurons. This hypothesis is
consistent with previous observations in paralyzed humans
who learned to move a cursor on the screen using cortical
activity (Kennedy and King 2000). It is also supported by the
results that cortical neurons may modulate their firing rate
either during use of tools (Iriki et al. 1996), according to
cursor movement on the screen rather than underlying arm
movements (Alexander and Crutcher 1990; Shen and
Alexander 1997), or in relation to the orientation of spatial
attention (Lebedev and Wise 2001).

Our results on cortical reorganization are very distinct
from a previous claim of plastic changes in directional tuning
of cortical cells during the use of BMI (Taylor et al. 2002).
First, in that previous report, the population vector model
yielded poor predictions when applied to activity of a small
sample (n = 18) of M1 cells. Introduction of visual feedback
improved the subject’s performance to a point in which
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monkeys could use a BMI to produce stereotypic center-out
movements of a cursor. The authors claimed that changes in
cell-preferred direction occurred after switching to brain
control. However, preferred directions were derived not from
the real-movement directions of the hand or the cursor, but
rather from ideal directions defined by target locations. In
addition, a wide 420-990 ms time window was used to
measure firing rates. This window was comparable to move-
ment duration. Therefore, differences in movement trajecto-
ries and duration between hand and brain control, rather
than true differences in cell directional tuning, could lead to
different estimates of preferred direction. The report also
claims that tuning strength increased with training in brain,
but not hand, control. However, tuning depth was evaluated
by measuring covariation between firing rate modulations
and target locations, rather than actual movement trajecto-
ries. Because during training, cursor trajectories gradually
approached a straight line connecting the starting point and
the target, the observed improvement in covariation between
target locations and neuronal firing rate modulations could
simply reflect the improvement in movement accuracy. These
considerations should be taken into account to decide how
much of the plasticity reported by Taylor et al. (2002) reflects
real cortical reorganization instead of resulting from the
improvement in the animal’s behavioral performance during
the task used to measure directional tuning.

In the present study, all the changes in firing and tuning
properties of neuronal ensembles were related to the actual
trajectories produced by the monkeys during pole and brain
control. Moreover, the relationship between the neuronal
firing and movement patterns was evaluated continuously.
Thus, the cortical changes reported here more closely
reflected the relationship between neuronal signals and
motor behaviors that they underlie.

Overall, the present findings demonstrate that it is
reasonable to envision that a cortical neuroprosthesis for
restoring upper-limb movements could be implemented in
the future, following the basic BMIc principles described
here. We propose that long-term operation of such a device
by paralyzed subjects would lead, through a process of
cortical plasticity, to the incorporation of artificial actuator
dynamics into multiple brain representations. Ultimately, we
predict that this assimilation process will not only ensure
proficient operation of the neuroprosthesis, but it will also
confer to subjects the perception that such apparatus has
become an integral part of their own bodies.

Materials and Methods

Behavioral training and electrophysiology. Two adult female
monkeys (Macaca mulatta) were used in this study. All procedures
conformed to the National Research Council’s Guide for the Care and
Use of Laboratory Animals (1996) and were approved by the Duke
University Animal Care and Use Committee.

At the time of surgery, animals had completed a period of chair
training, and one of them (monkey 2) was familiarized with the
requirements of task 1 (a large target size was used in this preliminary
training). Multiple arrays containing 16-64 microwires each (separa-
tion between adjacent microwires = 300 pm) were implanted in
several frontal and parietal cortical areas in each animal (Nicolelis et
al. 2003) (96 in monkey 1 and 320 in monkey 2). Implanted areas
included the dorsal premotor cortex (PMd), supplementary motor
area (SMA), and the primary motor cortex (M1) in both hemispheres.
In monkey 1 an implant was placed in the primary somatosensory
cortex (S1). In monkey 2, the medial intraparietal area (MIP) of the
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posterior parietal cortex (PP) was also implanted. The monkeys
performed the tasks with their left arms, which were contralateral to
the areas with the best cell yield. Upon recovery from this surgical
procedure, animals were transferred to the experimental apparatus
illustrated in Figure 1A and started behavioral training.

Monkeys were seated in a primate chair facing a computer
monitor. They were trained to perform three different tasks using a
hand-held pole equipped with a pressure transducer (PCB Piezo-
electrics Inc., Depew, New York, United States) for measuring
grasping force. The position of the monkey’s hand was obtained
from an infrared marker located on top of the pole. The marker was
monitored by an optical tracking system (Optotrak, Northern Digital,
Waterloo, Ontario, Canada). In the first task, the monkeys were shown
a small disk (the “cursor” ) and a larger disk (the “target” ). They had
to use the pole to put the cursor over the target and remain within it
for 150 ms. Should the monkey cross the target too fast, the target
disappeared and the trial was not rewarded. Each trial began with a
target presented in a random position on the screen. The monkeys
had 5 s to hit the target and get a juice reward. In the second task, the
monkeys were presented with the cursor in the center of the screen
and two concentric circles. The ring formed by these two circles
instructed the amount of gripping force the animals had to produce.
The pole was fixed, and the cursor grew in size as the monkey gripped
the pole, providing continuous visual feedback of the gripping force.
Force instruction changed every trial. The third task contained
elements of tasks 1 and 2. In this task, the monkeys were presented
with the cursor, the target, and the force-instructing ring and were
required to manipulate the pole to put the cursor over the target and
match the ring size by developing the proper amount of gripping
force, while staying inside the target. The monkeys received juice
rewards for correct performance. In task 1, the monkeys were initially
trained without the robot in the loop, but after a certain number of
sessions, the robot was incorporated to the loop. In tasks 2 and 3, the
robot was always part of the loop.

A 512-multichannel acquisition processor (Plexon Inc., Dallas,
Texas, United States) was employed to simultaneously record from
single neuron and multiunit activity during each recording session.
EMG signals were recorded from the skin surface just above the belly
of the wrist flexors, wrist extensors, and biceps muscles using gold
disc electrodes (Grass Instrument Co., West Warwick, Rhode Island,
United States) filled with conductive cream. These signals were
amplified (gain, 10,000X), high-pass filtered, rectified, and smoothed
(kernel convolution).

Linear model. Hand position, velocity, and gripping force were
modeled as a weighted linear combination of neuronal activity using
a multidimensional linear regression or Wiener filter, the basic form
of which is

y(t) =b+ i: a(u)x(t — u) + €(¢)

u=—m

In this equation, x(f — u) is an input vector of neuronal firing rates at
time ¢ and timelag w, y(f) is a vector of kinematic and dynamic
variables (e.g., position, velocity, gripping force) at time ¢, a(u) is a
vector of weights at timelag u, b is a vector of y-intercepts, and &(¢) are
the residual errors. The lags in the summation can in general be
negative (in the past) or positive (in the future) with respect to the
present time ¢. We only considered lags into the past.
This equation can be recast in matrix form as

Y = XA,

here each row in each matrix is a unit of time and each column is a
data vector. Note that matrix X contains lagged data and thus has a
column for each lag multiplied by the number of channels; e.g., 100
channels and 10 lags imply 1000 columns. The y-intercept is handled
by prepending a column of ones to matrix X. Matrix A is then solved

by
A=inu(X"X)XTY

Real-time predictions of motor parameters. Predictions of hand
trajectory and grasping force were generated using the Wiener filter
described above. Neuronal firing rates were sampled using 100 ms
bins, and 10 bins preceding a given point in time were used for
training the model and predicting with it. Models were trained with
10 min of data and tested by applying them to subsequent records. In
individual neuron analysis, a model was trained using single-unit/
multiunit activity only and then tested for predictions of motor
parameters. In velocity mode, the model was trained using velocity
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derived from position measurements by digital differentiation.
During brain control, predicted velocity was digitally integrated to
provide an output position signal. To avoid slow drifts, this signal was
high-pass filtered with a first-order Butterworth filter (cutoff
frequency of 2 Hz). The linear models independently predicted X,
Y, and Z hand position coordinates. However, because the three tasks
reported in this study took place in the X-Y plane, the predictions of
position and velocity along the Z axis were not used. Several
alternative decoding algorithms were tested offline, including a
Kalman filter, normalized least-mean squares filter, and a feed-
forward backpropagation artificial neural network. None of these
methods could consistently outperform the Wiener filter.

Robot arm and gripper. A 6 DOF robotic arm equipped with a 1
DOF gripper (The ARM, Exact Dynamics, Didam, The Netherlands)
was used in this study. The gripper was sensorized with pressure
transducers (Flexiforce, Tekscan, Boston, Massachusetts, United
States) of 1 Ib (2.2 kg) force range for providing grasping force
feedback. Position feedback of the robot was obtained through the
built-in joint encoders. Both the commands for controlling the robot
and the feedback were in Cartesian coordinates. The communication
between the client computer and the robot was performed via the
CAN bus (National Instruments, Austin, Texas, United States)
(sampling period, 60 ms). For the tasks involving grasping, the
gripper had a light object inserted made of foam material. This object
was squeezed by the gripper in proportion to either the force applied
by the monkey in the pole or to the brain signal.

Data analysis. The monkeys’ behavior was continuously monitored
and videotaped throughout each recording session. The percentage
of correctly performed trials and the time to accomplish each trial,
during both pole and brain controls, were used as measures of
performance. Chance performance for each task was determined
using Monte Carlo simulations of a random walk with 2, 1, and 3 DOF
(for task 1, task 2, and task 3, respectively.) The velocity of the random
walk was varied from 1 to 500 mm/s, with 10,000 trials for each
velocity. For tasks 1 and 3, this was the velocity of the cursor; for task
2, velocity corresponded to the rate in change of the cursor radius.
Because each monkey operated the pole at different speed,
predictions shown in Figure 1C-1E are based on the average velocity
across all sessions for a given monkey.

Random neuron-dropping (ND) technique was implemented as
described by Wessberg et al. (2000). Population data (10 min) were
used to fit a linear model, which was used to predict motor
parameters from the subsequent record. A single neuron was then
randomly removed from the population, the model retrained, and
new predictions generated. This process was repeated until only one
neuron remained. The average squared linear correlation coefficient
(R?) as a function of number of neurons was obtained by repeating
this procedure 30 times for each ensemble. Curves were obtained
with populations of neurons segregated from M1, PMd, S1, SMA, and
PP and for single units and multiunits.
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