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Abstract

Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution
rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication,
many other viruses replicate in the nucleus of their host’s cells and are therefore prone to endogenization, a process that
involves integration of viral DNA into the host’s germline genome followed by long-term vertical inheritance. Such
endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used
to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses
(Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report
the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species
analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses
infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus
integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred
based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between
endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these
viruses are on the order of 1028 substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated
based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of
the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian
hepadnaviruses do not reflect their mode of evolution on a deep time scale.
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Introduction

Most viruses are characterized by high substitution rates, which

generally prevent reconstruction of their long-term evolutionary

history [1]. Consequently, the origins and age of most extant

viruses remain elusive [2]. One solution to this conundrum lies in

the advent of paleovirology, the study of paleoviruses and the way

they have shaped the antiviral genes of their hosts over millions of

years [3]. Although viruses lack a true geological fossil record,

some have left footprints of their evolution in their hosts’ genome.

For example, vertebrate retroviruses are RNA viruses that

normally integrate into the genome of their host’s somatic cells

as part of their replication cycle. On occasion, these viruses may

integrate into the germline genome of their host, and become

inactive and vertically inherited over millions of years. Their

molecular relics, called endogenous retroviruses, now make up a

substantial fraction of vertebrate genomes (,8% in human; [4]).

While retroviruses account for the major fraction of known viral

genomic fossils, various other viruses that do not normally integrate

into the genome but replicate in the nucleus of the host cell are

susceptible to fortuitous chromosomal integration. For example,

pararetroviruses (double-stranded DNA) have deposited numerous

endogenous copies in the genome of several plant species [5], and

singular integration events have been reported for gemini-like

viruses (single-stranded DNA) in tobacco [6], and for non-retroviral

RNA viruses such as totovirus-like and M2-killer-like viruses in fungi

(double-stranded RNA; [7,8]) and flaviviruses in mosquitoes [9,10].

Genomic fossils closely related to modern viral groups are of

particular interest as they have the potential to unveil otherwise

inaccessible features of the long-term evolution of viruses. A handful

of such precious paleoviruses have recently been unearthed from

mammalian genomes. Among these, two ancient lentiviruses

(RELIK in rabbit [11] and pSIV in primates [12,13]) and one

foamy virus (SloEFV in xenarthrans [14]) revealed that the history

of these two retroviral genera can be rooted on a deep time scale,

challenging earlier views on retroviral evolution based on

comparisons of extant viral genomes. Likewise, the recent discovery

of multiple endogenous bornaviruses and filoviruses in diverse

mammals showed that these single-stranded RNA viruses were able

to infiltrate repeatedly the germline of distant mammalian species

over at least the past 40 My [15–17].

Hepadnaviridae (including hepatitis B viruses [HBVs]) are compact

(,3,000 bp), partially double-stranded circular DNA viruses infecting

various mammal and bird species and responsible for ,600,000
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human deaths of acute or chronic liver disease per year [18]. While

replication of these viruses does not rely on integration into the host

genome, a relatively large number of chromosomal integration events

have been characterized in mammalian liver cells sampled from

chronically infected individuals [19]. In this study, we show that

hepadnaviruses have also infiltrated the germline genome of some of

their vertebrate hosts in the distant past. The viral sequences fossilized

since these endogenization events offer an unprecedented opportunity

to reevaluate the mode and tempo of Hepadnaviridae evolution.

Results

Endogenous Hepadnaviruses in the Zebra Finch Genome
TBLASTN searches using the duck HBV (DHBV) proteins on

all available genomes in GenBank yielded 15 hepadnavirus-like

fragments (collectively called endogenous zebra finch HBVs

[eZHBVs]). These sequences are interspersed into ten different

chromosomes of the zebra finch (Taeniopygia guttata, Estrildidae)

and show between 55% and 75% nucleotide similarity to the

DHBV genome (Figure 1; Table 1; Dataset S1). Most of these

fragments contain one or more mutations compromising their

coding capacity, which suggests that they have evolved under no

functional constraint since integration. Together, the 15 eZHBV

segments cover ,70% of the DHBV genome, which is structurally

representative of all hepadnaviruses [20] (Figure 1). eZHBVs tend

to map within two loosely defined regions of DHBV, one

encompassing the core and polymerase N-terminal domains

(eZHBVc–eZHBVi; group 1), and one overlapping with the

preS/S and polymerase C-terminal domains (eZHBVj–eZHBVn;

group 2). In addition, two eZHBVs (eZHBVa and eZHBVb) map

to other regions of the core domain (Figure 1). eZHBVl and

eZHBVl* (both located on Chromosome 20) map to the same

region of the DHBV genome and are highly similar (97% over

537 bp). Similar levels of identity are observed between their

flanking genomic regions: 96.7% identity over 637 bp in the 59

flanking region and 97% identity over 534 bp in the 39 flanking

region. These observations suggest that one insertion most likely

derives from the other through intrachromosomal duplication of a

genomic fragment including the initial eZHBV insertion along

with its flanking regions.

In order to assess the phylogenetic relationship among eZHBVs

and hepadnaviruses, we conducted phylogenetic analyses of amino

acid alignments including extant hepadnaviruses and group 1 (106

amino acids) and group 2 (293 amino acids) eZHBVs. The results

show that in both phylogenies (Figure 2A and 2B) hepadnaviruses

can be divided into two clusters, one grouping eZHBVs and extant

avian hepadnaviruses and the other including all mammalian

hepadnaviruses. Within the former cluster, eZHBVs are consis-

tently more distant from extant avian hepadnaviruses than these

are from each other. While group 1 eZHBVs form a monophyletic

group (Figure 2A), there is no statistically supported clustering of

group 2 eZHBVs with each other (Figure 2B). The only exception

is the close clustering of eZHBVl and eZHBVl*, which likely

reflects their relatively recent origin by duplication rather than as

independent insertions (see above).

Author Summary

Paleovirology is the study of ancient viruses and the way
they have shaped the innate immune system of their hosts
over millions of years. One way to reconstruct the deep
evolution of viruses is to search for viral sequences
‘‘fossilized’’ at different evolutionary time points in the
genome of their hosts. Besides retroviruses, few virus
families are known to have deposited molecular relics in
their host’s genomes. Here we report on the discovery of
multiple fragments of viruses belonging to the Hepadna-
viridae family (which includes the human hepatitis B
viruses) fossilized in the genome of the zebra finch. We
show that some of these fragments infiltrated the germline
genome of passerine birds more than 19 million years ago,
which implies that hepadnaviruses are much older than
previously thought. Based on this age, we can infer a long-
term avian hepadnavirus substitution rate, which is a
1,000-fold slower than all short-term substitution rates
calculated based on extant hepadnavirus sequences. These
results call for a reevaluation of the long-term evolution of
Hepadnaviridae, and indicate that some exogenous
hepadnaviruses may still be circulating today in various
passerine birds.

Figure 1. Map showing the position of the eZHBVs in the DHBV genome. Grey rectangles represent the different open reading frames of
DHBV (GenBank accession number AY494851, isolated from a puna teal) encoding the precore (preC), core (C), polymerase (P), surface (preS and S),
and regulatory HBx-like (X) proteins. eZHBVs (black lines) are labeled with letters as in Table 1. Group 1 and 2 correspond to the two groups of
overlapping fragments used for the phylogenetic analyses (Figure 2). Asterisks indicate the occurrence of segmental duplication (see text). The white
triangle in eZHBVl* indicates the presence of a 618-bp solo LTR belonging to the TguLTRK1b LTR retrotransposon family [41]. The solo LTR is flanked
by a 6-bp target site duplication (GCTCTC).
doi:10.1371/journal.pbio.1000495.g001
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How Old Are eZHBVs?
A first minimal estimate of the age of eZHBVs can be derived

indirectly from the time at which the duplication yielding eZHBVl

and eZHBVl* occurred, which must postdate the chromosomal

integration of the ancestral eZHBVl element. The distance

between these duplicates is 0.03 (Table 2). To our knowledge,

the most comprehensive estimate of neutral nuclear substitution

rates available for birds, calculated based on a comparison of

multiple intron sequences between chicken and turkey, was found

to range between 261029 and 3.961029 substitutions per site per

year (subs/site/year) [21], values similar to the range of those

estimated for mammals (2.261029 to 4.561029 subs/site/year;

[22,23]). The avian rates are based on a fossil calibration of the

split between Anatidae and Anhimidae at 55 My [21,24,25].

Dividing half of the distance between eZHBVl duplicates (0.015)

by the bird neutral substitution rates yields a duplication time

ranging between 3.8 My (with 3.961029 subs/site/year) and

7.5 My (with 261029 subs/site/year). The timing of this

duplication provides a minimal estimate for the integration of

the ancestral eZHBV fragment.

A more direct way to estimate the age of eZHBVs is to use a

phylogenetic approach, reasoning that if an insertion is shared by

two species at the same (orthologous) locus, the integration event

must be at least as old as the last common ancestor of the two

species. It is important to note that the analysis of a large number

of chromosomal integrants of HBV in somatic mammalian cells

has revealed no preference for insertion in a specific sequence

motif (e.g., [19,26]). Thus, the possibility that two identical viral

fragments would integrate at the exact same genomic position (i.e.,

between the same two nucleotides) independently in multiple

species is extremely unlikely. Using PCR primers designed on the

genomic regions flanking three eZHBVs, we were able to amplify

two orthologous insertions (eZHBVa and eZHBVl) in three other

species of estrildid finches (black throated finch [Poephila cincta],

scaly breasted munia [Lonchura punctulata], and gouldian finch

[Chloebia gouldiae]) and in the dark-eyed junco (Junco hyemalis), a

non-estrildid passerine bird belonging to the Emberizidae family

(Figure 3). We also obtained a positive PCR product for eZHBVj

in the three estrildid finches, and were able to amplify the empty

site orthologous to eZHBVa in the olive sunbird (Cyanomitra

olivaceus, Nectariniidae) (Figures 3 and 4). The identity of all the

eZHBV fragments amplified by PCR was confirmed by DNA

sequencing (Datasets S4, S5, S6). This revealed that each

orthologous eZHBV is present at the same chromosomal position

in all species where it could be amplified. Furthermore, in all three

cases, the phylogenetic relationships between orthologous

eZHBVs reflect the phylogenetic relationships of the bird species

(Figure 3). Together, these data strongly suggest that each of these

three insertions descend from an ancestral integration event that

occurred prior to the split of the different bird species.

The most recent molecular phylogenetic analyses divide finches

and their allies into two major monophyletic clades, one consisting

of African and Australasian estrildid finches and weavers, and the

other grouping American emberizid sparrows (including the dark-

eyed junco) together with fringillid finches and Old World

sparrows [27]. Within Estrildidae, the gouldian finch is sister to

a clade grouping the scaly breasted munia and finches of the

genera Poephila (black throated finch) and Taeniopygia (zebra finch)

(Figures 3A and 4; [28]). The congruence between these

relationships and the phylogenies of orthologous eZHBVa and

eZHBVl (Figure 3) indicates that the two eZHBVs result from two

independent germline integration events of hepadnavirus-like

sequences in a common ancestor of Estrildidae and Emberizidae,

and that eZHBVa was inserted after the divergence of the

Table 1. Characteristics of the endogenous HBV fragments found in the zebra finch genome (eZHBVs).

eZHBV
Position in
DHBVa Position in Finch Genome

Length
(bp)

NS
Mutationsb

Similarity
to DHBV 59 Gene in Finch 39 Gene in Finch

Start End Chromosome Start End

a 2773 27 24 5,223,682 5,223,949 268 0/1 58.9% Scn3b (690 bpc) Scn3b (50 bp)

b 85 213 1 50,694,672 50,694,800 129 1/0 63.8% Fry (2.2 kb) Fry (1.7 kb)

c 269 781 12 3,002,393 3,002,898 507 1/0 61.5% ATP2B2 (10 kb) ATP2B2 (42 kb)

d 428 670 26 864,217 864,459 246 1/0 59.3% Trim33 (1.3 kb) Trim33 (12.5 kb)

e 428 556 6 2,324,466 2,324,594 129 0/0 62% cdh23 (5.5 kb) cdh23 (500 bp)

f 476 757 1A 68,942,470 68,942,804 335 4/1 62.2% LMO3 (13 kb) MGST1 (34 kb)

g 476 622 1A 68,944,006 68,944,152 147 1/1 70.5% LMO3 (15 kb) MGST1 (32 kb)

h 530 673 8 25,658,020 25,658,163 144 0/0 69.4% — —

i 590 790 Z 8,647,882 8,648,070 185 1/0 60.8% — —

j 1310 2521 Z 8,648,446 8,649,654 1,209 1/0 65.5% — —

k 1466 2512 1 50,694,887 50,695,943 1,057 4/5 54.8% Fry (2.5 kb) Fry (500 bp)

l 1388 1936 20 1,111,838 1,112,362 537 2/0 72.3% — C20orf4 (14 kb)

l* 1388 1936 20 1,119,136 1,120,278 537 1/0 72.7% — C20orf4 (6 kb)

m 1334 1780 6 33,336,955 33,337,390 436 2/3 75% Dhx32 (1 kb) Dhx32 (100 bp)

n 1562 1789 19 5,856,561 5,856,833 273 0/0 72.8% — —

eZHBVa–eZHBVe, eZHBVk, and eZHBVm are in an intron; a dash indicates that there is no gene within 50 kb 59 and/or 39 of the insertion. eZHBVl and eZHBVl* derive
from post-insertional duplication (see Results for details). Positions in the zebra finch genome are from the UCSC Genome Bioinformatics browser, based on the
assembly WUGSC 3.2.4/taeGut1 (July 2008). See Figure 1 for the mapping of eZHBVs on DHBV. The 15 eZHBV sequences are provided in Dataset S1.
aGenBank accession number AY494851, isolated from a puna teal.
bNonsense, stops/frameshifts.
cDistance to the nearest gene or exon.
doi:10.1371/journal.pbio.1000495.t001
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Nectariniidae lineage. The divergence time between Estrildidae

and Emberizidae has been estimated at 25 My based on relaxed

molecular clock analyses of rag1 and rag2 nuclear genes using a

paleobiogeographical calibration of 82 My for the split between

Acanthisittidae and other passerine birds [29,30]. The same

analysis yielded an age of 35 My for the most recent common

ancestor of Nectariniidae and Estrildidae. These dates would place

the origin of eZHBVl prior to 25 My, and that of eZHBVa

between 35 and 25 My ago.

Our last estimate of the age of eZHBVs relies on the level of

sequence divergence between orthologous eZHBV sequences. The

corrected distances inferred for orthologous eZHBVa (222 bp) and

Figure 2. Unrooted trees of endogenous and extant hepadnaviruses. Avian hepadnaviruses are in red (endogenous) and blue (extant). The
trees were obtained after maximum likelihood and Bayesian analyses of an amino acid alignment of two regions of the HBV genome: (A) from
position 269 to 781 of DHBV, corresponding to group 1 sequences in Figure 1 (eZHBVe and eZHBVi were not included in the analyses because they
overlap by only 46 bp) and (B) from position 1310 to 2521 of DHBV (GenBank accession number AY494851), corresponding to group 2 sequences in
Figure 1. Numbers on the branches correspond to bootstrap values greater than 70 and posterior probabilities greater than 0.9. The alignments and
accession numbers of the sequences are provided in Datasets S2 and S3.
doi:10.1371/journal.pbio.1000495.g002
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eZHBVl (238 bp) are 0.15 and 0.16 respectively between the

zebra finch and the dark-eyed junco (see Materials and Methods).

Selection analyses on these two fragments did not reveal any sign

of positive or purifying selection (see Materials and Methods),

suggesting that eZHBVa and eZHBVl have evolved under no

functional constraint since their chromosomal integration in the

common ancestor of these two birds, thereby accumulating

substitutions at the neutral rate of these species. Applying the

above-mentioned bird neutral substitution rates to half of the

zebra finch/junco distances for eZHBVa and eZHBVl yielded

integration times ranging between 40 My (with the eZHBVl

distance of 0.08 and a rate of 261029 subs/site/year) and

19.2 My (with the eZHBVa distance of 0.075 and a rate of

3.961029 subs/site/year).

While our estimates of the age of eZHBVs are based on two

different calibration points located at distant phylogenetic

positions within the avian tree (55 My for the split between

Anatidae and Anhimidae, or 82 My for the split between

Acanthisittidae and other passerine birds), both approaches yield

dates that largely overlap (40–19.2 My and 35–25 My). This

suggests that eZHBVa and eZHBVl are at least 19 My old (and

may be as much as 40 My old), which implies that the origin of

avian hepadnaviruses as a whole (including extant and extinct viral

lineages) is much deeper than the origin of currently circulating

avian hepadnaviruses (time to most recent common ancestor

,6,000 y; [31]).

Long-Term Substitution Rates in Avian Hepadnavirus
Because eZHBVa and eZHBVl are at least 19 My old, the total

genetic distance between these fragments and extant bird

hepadnaviruses is expected to correspond to the sum of (i) the

distance accumulated over the past 19 My at the bird neutral

substitution rate (A in Figure 4), which can be approximated as

half the distance between orthologous junco/zebra finch eZHBVa

(0.075) or eZHBVl (0.08), (ii) the distance accumulated at the viral

rate during the same period (D in Figure 4), and (iii) the distance

accumulated at the viral rate between the time at which extant

avian hepadnaviruses and eZHBVs diverged and the time of

eZHBV endogenization (e.g., C+B for eZHBVl in Figure 4). The

average corrected distance between eZHBVl and extant avian

hepadnaviruses after subtracting the distance accumulated during

19 My at the bird rate (0.08) is 0.41 (range = 0.39–0.45). For

eZHBVa, this distance is 1.3 (range = 1.15–1.5). Dividing these

distances by 19 My yields average estimates of long-term

substitution rates of 2.1561028 subs/site/year for eZHBVl and

6.861028 subs/site/year for eZHBVa. Note that these values are

likely to be overestimates as the distance between the time at

which extant avian hepadnaviruses and eZHBVs diverged and the

time of eZHBV endogenization is unknown (C+B for eZHBVl and

F+E for eZHBVa, Figure 4), and therefore could not be subtracted

from the total extant avian hepadnaviruses/eZHBV distance.

Discussion

In this study we provide evidence that the germline genome of

passerine birds has been infiltrated by several ancient and diverse

hepadnaviruses that still show surprisingly high levels of similarity

to extant avian hepadnaviruses. Although eZHBVs represent, to

our knowledge, the first instance of endogenous DNA viruses

reported in animals, several characteristics of hepadnaviruses

suggest that endogenization of these viruses may be likely.

Hepadnaviruses replicate in the nucleus of their host’s cells via a

reverse-transcribed RNA intermediate [32,33]. Part of their life

cycle is therefore spent in close proximity to the host DNA, which

may facilitate chromosomal integration via various host- or

transposable-element-mediated mechanisms that use either DNA

or RNA templates (e.g., [15]). Indeed, although integration into

the host genome is not required for the replication of the virus,

integrated HBV genomic fragments are commonly observed in

liver cells of individuals persistently infected, where they tend to be

associated with hepatocarcinoma [19]. In addition, while hepad-

navirus replication is thought to occur mainly in hepatocytes, its

tropism may extend to other tissue and cell types, including germ

cells. For example, avian hepadnavirus replication has been shown

to occur in the yolk sac of developing duck embryos [34].

Typically, large quantities of viral particles circulate in the blood

during HBV infection [35]. These particles have the capacity to

Table 2. Corrected distances between avian hepadnaviruses calculated on the region corresponding to group 2 eZHBVs (see
Figure 1).

eZHBVl eZHBVl* eZHBVj eZHBVk eZHBVn eZHBVm Crane
Ross’s
Goose Heron

Snow
Goose

White
Stork

eZHBVl* 0.03

eZHBVj 0.89 0.87

eZHBVk 1.99 1.77 1.51

eZHBVn 0.55 0.58 0.81 2.43

eZHBVm 0.48 0.49 0.35 1.43 0.84

Crane 0.49 0.46 0.81 1.53 0.49 0.42

Ross’s goose 0.44 0.42 0.80 1.51 0.48 0.41 0.17

Heron 0.53 0.51 0.84 1.60 0.52 0.43 0.23 0.23

Snow goose 0.47 0.45 0.76 1.46 0.49 0.44 0.14 0.17 0.22

White stork 0.53 0.50 0.83 1.59 0.51 0.45 0.23 0.23 0.11 0.22

Duck 0.51 0.49 0.77 1.43 0.48 0.43 0.14 0.18 0.23 0.09 0.26

Distances were calculated using the TVM+G model under maximum likelihood settings (see Materials and Methods) in PAUP [65]. Values in bold correspond to distances
between eZHBVs that are larger than 0.54. This distance threshold corresponds to twice the average distance between extant avian hepadnaviruses (260.19 = 0.38) plus
0.16, which corresponds to a conservatively high estimate of the distance accumulated at the bird genome rate after integration (see Materials and Methods). eZHBVl
and eZHBVl* derive from post-insertional duplication (see Results for details).
doi:10.1371/journal.pbio.1000495.t002
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tightly bind to many different cell types [35], and there is evidence

supporting the presence of HBV DNA in spermatozoa and ovaries

as well as the chromosomal integration of HBV in spermatozoa

[36–38]. Based on these data, infiltration of the germline genome

by hepadnaviruses followed by long-term vertical inheritance

appears largely plausible. Thus, it is likely that other endogenous

hepadnaviruses await discovery in other birds and perhaps also in

mammalian genomes.

The precise mechanisms underlying the chromosomal integra-

tion of HBV remain unclear [19]. One model supported by

experimental evidence posits that viral linear double-stranded

DNA resulting from aberrant replication can be integrated during

repair of double strand breaks via non-homologous end joining

[39]. As the 39 extremity of eZHBVj (position 2521) and eZHBVk

(position 2512) map to a region of the DHBV genome that

corresponds to the predicted end of a typical linear HBV precursor

[40], the structure of these two fragments is potentially consistent

with integration via non-homologous end joining. We also note

that the extremities of several other fragments map to fairly

narrow regions of the viral genome (e.g., same 59 position for

eZHBVd and eZHBVe; Figure 1), which may reflect the presence

of breakpoint hotspots in the viral genomes that gave rise to

eZHBVs. Finally, while the zebra finch genome contains several

families of long terminal repeat (LTR) and non-LTR retro-

transposons [41] whose enzymatic machinery could have

potentially promoted the chromosomal integration of eZHBVs,

none of the insertions examined were terminated by a poly-A tail

or flanked by direct repeats, as would be expected if they had

occurred through retrotransposition [15].

An intriguing question is whether the multiple eZHBVs result

from endogenization events that took place during a short period

of time or whether they were assimilated at widely different times

over (at least) the past 19 My. Hepadnaviruses do not encode an

integrase, and chromosomal integrants generally correspond to

truncated genomes (as observed here). Thus, unlike retroviruses,

integrated HBV fragments cannot in principle replicate further

through intragenomic transposition or reinfection, and as such

they can be considered essentially ‘‘dead on arrival.’’ With this in

mind, we contend that eZHBVs are likely to result from multiple

independent episodes of germline infiltrations that took place on a

deep time scale, possibly spanning several millions of years, and

involving distantly related hepadnaviruses. This inference is

supported by the large distances observed between eZHBVs

(Tables 2 and 3). Specifically, all pairwise distances involving

eZHBVi and those between eZHBVl, eZHBVj, eZHBVk, and

eZHBVn are more than 2-fold higher than the average distance

separating extant avian HBVs, even when subtracting an

approximate distance accumulated at the bird genome rate since

integration (distances in bold in Tables 2 and 3). Together with the

long branches leading to eZHBVs in the hepadnavirus tree

(Figure 2), these data strongly suggest that diverse hepadnaviruses

(at least five based on the distance threshold described above)

have been circulating in birds for several million years. More

specifically, we believe that the large inter-eZHBV distances likely

reflect the fact that eZHBVs stem from viruses that were already

deeply divergent at the time of integration, and/or that eZHBVs

were integrated at time points separated by several million years

over at least 19 My. A third, non-mutually exclusive explanation

for these large distances is that the evolution of the hepadnavirus

genome may be subject to strong mutational saturation (see also

below). Considering that these viruses have crossed species

boundaries repeatedly over the past 6,000 y [20,31,42], we

speculate that a wide range of bird species may have been, and

may still be, infected by hepadnaviruses. It would be interesting to

explore whether hepadnaviruses are still circulating in extant

estrildid finches such as the zebra finch. Such a discovery would

provide a powerful system to study the virus and its potential

association with hepatocarcinoma in a model bird species with a

complete genome sequence [41].

Various calculations of HBV substitution rates based on

comparison of extant viruses have produced broadly similar

estimates, ranging from 7.7261024 to 7.961025 subs/site/year

[31,43–47]. Surprisingly, we infer long-term substitution rates that

are more than three orders of magnitude slower than these short-

term rates. It is important to note that while eZHBVs evolved at

the bird genome rate since their integration, this cannot explain

the slowdown in long-term rates inferred in this study as the

distance accumulated at the bird rate (A in Figure 4) was removed

from our calculation of long-term hepadnavirus rates. Our

estimates (2.1561028 to 6.861028 subs/site/year) therefore

represent a range of rates under which avian hepadnaviruses

have evolved from the time just preceding the integration of

eZHBVa and eZHBVl in the bird genome (,19 My ago) to the

time at which circulating avian hepadnavirus genomes were

sequenced (the last two decades).

Gibbs et al. [48] recently suggested that viral evolutionary rates

may vary dramatically depending on the time scale on which they

are measured. The main line of evidence supporting this view was

that rates inferred from serially or heterochronously sampled

sequences are invariably more than two orders of magnitude

higher than those calculated when assuming viruses have co-

diverged with, and are therefore as old as, their hosts. In most

cases, however, the hypothesis of host/virus co-divergence is only

indirectly supported by the seemingly strong host specificity of the

virus, and/or the apparent topological congruence (often not

formally tested) between host and virus phylogenies. A major

pitfall in this reasoning is that processes other than co-divergence

may explain congruent phylogenies between hosts and viruses

[49–51]. Given the potential caveats associated with the hypothesis

of host/virus co-divergence, it is important to emphasize that our

results do not rely on this assumption. Rather, they are based on a

direct measure of the distance separating extant hepadnaviruses

from extinct ones that are at least 19 My old.

How can we explain the apparent major disparity between

short- and long-term substitution rates of hepadnaviruses? The

rate of nucleotide substitution in any system depends on the

Figure 3. Illustration and phylogenetic trees of orthologous eZHBVa, eZHBVl, and eZHBVj. The primers (Scn3b-F/R) used to amplify
eZHBVa (A) are anchored in exons 3 and 4 of a predicted gene homologous to the human SCN3B gene (blue), on zebra finch Chromosome 24. One of
the primers (8718R) used to amplify eZHBVj (B) is located in the region flanking the insertion in 39 on zebra finch Chromosome Z, while the other
(8718F) is anchored in eZHBVj. One of the primers (1978F) used to amplify eZHBVl (C) is located in the region flanking the insertion in 59 on zebra
finch Chromosome 20, while the other (hfr1) is anchored in eZHBVl. Each orthologous eZHBV tree reflects the bird tree, derived from [28,30] and
illustrated in (A). The congruence between orthologous eZHBV trees and the bird tree is in each case consistent with one event of eZHBV integration
in a common ancestor of the different birds where the insertion was found. The eZHBV trees are rooted using circulating avian hepadnaviruses as an
outgroup. Numbers on branches correspond to bootstrap values greater than 70 and posterior probabilities greater than 0.9. The precise position
and sequence of the PCR primers for each locus is given in Datasets S4, S5, S6. The chromosomal coordinates are derived from the July 2008 assembly
of the zebra finch genome (WUGSC 3.2.4/taeGut1).
doi:10.1371/journal.pbio.1000495.g003
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background mutation rate, the rate of replication, and the rate of

fixation. Hepadnaviruses replicate their genome via an RNA

intermediate using a reverse transcriptase (RT). While to our

knowledge there is no precise measure of the fidelity of the

hepadnavirus RT, this enzyme lacks a proofreading activity and is

known to be highly error prone in all retroviruses and other

retroelements for which an error rate has been estimated [52,53].

Up to 20-fold variations in RT error rates have been reported

between different families of retroviruses [52]. It is therefore

conceivable that variations in the fidelity of the enzyme (i.e.,

background mutation rate) over time might explain some of the

difference between short- and long-term hepadnavirus substitution

rates. However, slow long-term substitution rates similar to those

reported here have been inferred for mammalian foamy viruses

Figure 4. Summary of the evolutionary scenario inferred in this study. The bird tree (in blue, left) includes representatives of three families
of passerine birds: Nectariniidae (olive sunbird, C. olivaceus), Emberizidae (dark-eyed junco, J. hyemalis), and Estrildidae (scaly breasted munia, L.
punctulata; gouldian finch, C. gouldiae; zebra finch, T. guttata; and Black throated finch, P. cincta). Phylogenetic relationships between the different
bird species are taken from [27,28,30]. Bird divergence times are taken from [29,30]. The Hepadnaviridae tree (in green, right) is derived from Figure 2.
The time for the most recent common ancestor of both human and avian extant hepadnaviruses has been estimated at less than 6,000 y [31]. The
age of the ancestors of rodent and mammalian hepadnaviruses as well as that of the whole Hepadnaviridae family is unknown. The presence or
absence of orthologous eZHBV insertions is denoted by ‘‘+’’ and ‘‘2’’, respectively. A question mark indicates that it was not possible to determine
whether the insertion was present or absent due to negative PCR. The germline infiltrations producing eZHBVl and eZHBVa are represented by the
fusion of two branches of the hepadnavirus tree with the bird tree. Our conservative estimate of 19 My for the integration time of eZHBVa and
eZHBVl is shown by a dash line (note that as eZHBVl could not be amplified in the olive sunbird, the time of integration of this fragment in the bird
genome might predate the split between the olive sunbird and the Emberizidae + Estrildidae clade). The genetic distance between dark-eyed junco
and zebra finch orthologous eZHBVl and that between the extant DHBV and eZHBVl are shown above the trees in order to illustrate the reasoning
elaborated in the text. The former corresponds to the sum of the distance accumulated at the bird genome rate since integration (i) on the branch
leading to the zebra finch and (ii) on the branch leading to the dark-eyed junco, i.e., 26A. The latter corresponds to the sum of (i) the distance
accumulated at the bird genome rate since integration (A), (ii) the distance accumulated at the viral rate since integration (D), and (iii) the distance
accumulated at the viral rate between the time at which extant avian hepadnaviruses and eZHBVs diverged and the time of eZHBV endogenization
(C + B for eZHBVl and F + E for eZHBVa). Note that C, F, E, and B are unknown and may be equal to zero.
doi:10.1371/journal.pbio.1000495.g004

Fossil Hepadnaviruses Uncovered in Bird Genomes

PLoS Biology | www.plosbiology.org 8 September 2010 | Volume 8 | Issue 9 | e1000495



(1.761028 subs/site/year) and human T cell lymphotropic virus

type II (1.09161027 to 7.11861027 subs/site/year), two mam-

malian retroviruses that yet replicate via a highly error-prone RT

[54,55]. In those cases, it is thought that both viruses evolve slowly

because they are non-pathogenic and replicate mainly as

integrated proviruses, using the high-fidelity DNA polymerases

of their hosts [56,57]. These two examples therefore suggest that

even in the presence of a high background mutation rate, viruses

can evolve slowly if their replication rate is reduced. By analogy, it

could be that hepadnaviruses have been characterized by low

levels of pathogenicity and by low rates of replication for most of

their evolutionary history. In this context, the high substitution

rates and epidemiological dynamics currently associated with

circulating hepadnaviruses might reflect recent drastic alterations

in the biology of these viruses and of the selective pressures acting

on them.

Another major process that may be responsible for the time

dependency of substitution rates suggested by this study is

purifying selection, as proposed for cellular organisms (e.g., [58–

60]; see [61] for discussion). About 60% of the HBV genome codes

for at least two overlapping open reading frames and therefore

contains very few synonymous sites. Consistent with this, it was

shown that nonoverlapping regions of the HBV genome evolve

faster than overlapping regions [31,62]. This tightly constrained

genetic organization, combined with the intrinsically low fidelity of

the RT, suggests that the effect of purifying selection on long-term

rates may be more pronounced for hepadnaviruses than for other

viruses and for cellular organisms. Lastly, the high background

mutation rates of hepadnaviruses may also result in strong

mutational saturation (homoplasy and back mutations), which

could also explain part of the difference between short- and long-

term hepadnavirus substitution rates (see also above). While it is

possible that saturation may in part hinder our ability to accurately

infer the long-term hepadnavirus substitution rates, we believe that

this phenomenon alone cannot explain the 1,000-fold difference

between short- and long-term substitution rates. Because our

knowledge on the deep evolution of extant viruses remains

fragmentary and because many factors may influence substitution

rates and their variation over time [1,63], it would be necessary to

revisit these questions when more fossil and modern hepadnavirus

sequences become available.

Materials and Methods

PCR and Sequencing
In order to screen for the presence or absence of orthologous

eZHBVs in several species of passerine birds (Table S1), we

designed PCR primers on the flanking regions of three insertions.

The sequences produced using these primers were aligned and are

provided, together with the sequence of the primers, in Datasets

S5 (eZHBVl), S6 (eZHBVj), and S7 (eZHBVa). For eZHBVl, we

used a forward primer (1978F) anchored in the 59 flanking region

(86 bp upstream of the insertion) in combination with a reverse

primer (hfr1) anchored within eZHBVl, at position 239–257. For

eZHBVj, we used a forward primer (8718F) anchored within

eZHBVj at position 712–734 in combination with a reverse primer

anchored in the 39 flanking region (86 bp downstream of the

insertion). For eZHBVa, we used a forward primer (Scn3b-F)

anchored in the 59 flanking region (768 bp upstream of the

insertion in T. guttata) that corresponds to the fourth exon of a

predicted gene homologous to human SCN3B. The reverse primer

(Scn3b-R) was anchored in the 39 flanking region (47 bp

downstream of the insertion in T. guttata), corresponding to the

third exon of the predicted scn3b gene.

The identity of the different bird species used in this study was

verified by sequencing a 420-bp fragment of the mitochondrial

NADH dehydrogenase subunit 2 (NADH2) gene (Figure S1) using

the following primers: Fwd 59–AGT CAT TTW GGS AGG AAT

CCT G; Rev 59–TTC CAY TTC TGA TTY CCA GAA G.

Standard PCR conditions were as follows: 2 min at 94uC; 30

cycles of 1 min at 94uC, 30 s at 48–62uC, and 30 s to 2 min at

72uC. PCR mix was buffer (56), 5 ml; MgCl2 (25 mM), 2 ml;

dNTP (10 mM), 0.5 ml; primer 1 (10 mM), 1 ml; primer 2 (10 mM),

1 ml; Taq (GoTaq, Promega), 1.25 U; DNA, 30–100 ng; and H2O

Table 3. Corrected distances between avian hepadnaviruses calculated on the region corresponding to group 1 eZHBVs (see
Figure 1).

eZHBVc eZHBVd eZHBVe eZHBVh eZHBVi eZHBVf eZHBVg Crane Heron
Ross’s
Goose

Snow
Goose

White
Stork

eZHBVd 0.63

eZHBVe 0.55 0.52

eZHBVh 0.28 0.27 0.13

eZHBVi 2.45 2.05 — 1.07

eZHBVf 0.61 0.36 0.21 0.32 2.07

eZHBVg 0.30 0.21 0.23 0.14 — 0.10

Crane 1.04 1.13 1.46 0.57 1.13 0.95 0.62

Heron 1.01 1.42 1.61 0.79 1.89 1.13 0.76 0.42

Ross’s goose 1.02 1.30 1.37 0.76 0.95 0.96 0.54 0.18 0.37

Snow goose 1.03 1.16 1.55 0.70 1.00 1.10 0.71 0.17 0.39 0.20

White stork 0.95 1.28 1.69 0.68 1.30 1.00 0.77 0.32 0.20 0.32 0.35

Duck 1.09 1.34 1.11 0.66 1.20 1.07 0.61 0.18 0.40 0.16 0.09 0.32

Distances were calculated using the TPM2uf+G model under maximum likelihood settings (see Materials and Methods) in PAUP [65]. Values in bold correspond to
distances between eZHBVs that are larger than 0.7. This distance threshold corresponds to twice the average distance between extant avian hepadnaviruses
(260.27 = 0.54) plus 0.16, which corresponds to a conservatively high estimate of the distance accumulated at the bird genome rate after integration (see Materials and
Methods).
doi:10.1371/journal.pbio.1000495.t003
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up to 25 ml. PCR products were directly sequenced on an ABI

3130XL sequencer (Applied Biosystems). All sequences produced

in this study were submitted to GenBank (accession numbers

HQ116564–HQ116583).

Analyses of Selection
Analyses of selection were carried out on alignments of each set

of orthologous insertions amplified in the various passerine birds

(eZHBVl, eZHBVj, and eZHBVa; provided in Datasets S4, S5,

and S6, respectively) using HyPhy [64]. We used the trees

corresponding to each alignment as inferred in Figure 3. The

nucleotide substitution model accomplishing the most accurate fit

to the data was determined using the NucModelCompare.bf

procedure: HKY85 for each of the three alignments. The

MG94xHKY85_3x4 codon substitution model was then fitted to

each alignment with global parameters and partition-based

equilibrium frequencies. This yielded a global v (non-synonymous

substitutions/synonymous substitutions) ratio of 0.98 (confidence

interval: 0.642323, 1.327), 0.66 (confidence interval: 0.44, 0.88),

and 0.93 (confidence interval: 0.62, 1.24) for eZHBVl, eZHBVa,

and eZHBVj respectively. Using a likelihood ratio test, the

likelihood function states for each alignment were then compared

to likelihood function states obtained using the same model/

alignment/tree but enforcing v= 1 (neutral evolution). This

revealed no significant difference (p = 0.95 for eZHBVl, 0.16 for

eZHBVa, and 0.81 for eZHBVj), suggesting that eZHBVl,

eZHBVj, and eZHBVa are evolving neutrally. We further tested

this by re-optimizing the likelihood function with local parameters

(where each branch of the tree has its own parameters) and

comparing the likelihood function state obtained when the non-

synonymous substitution rate and the synonymous substitution

rate can have their own value on each branch with the likelihood

function state obtained when the non-synonymous substitution

rate is forced to be equal to the synonymous substitution rate on

each branch. Again, the likelihood ratio test revealed no significant

difference (p = 0.61 for eZHBVl, 0.29 for eZHBVa, and 0.85 for

eZHBVj), suggesting neutral evolution in all branches.

Distances between Avian Hepadnaviruses
All distances were calculated under maximum likelihood

settings in PAUP 4.0 [65], using models of nucleotide substitution

chosen based on the Akaike Information Criterion in jModeltest

[66]: TPM2uf+G for group 1 eZHBVs, TVM+G for group 2

eZHBVs and for the distance between eZHBVa and extant avian

hepadnaviruses, TPM1 for the distances between passerine

eZHBVa orthologs, and HKY for the distance between passerine

eZHBVl orthologs.

In order to estimate whether eZHBVs result from multiple

integrations of a few very similar viral strains during a narrow time

frame or whether more divergent strains were endogenized at

widely different times during the last 19 My, we compared inter-

eZHBV distances to the average distances between extant avian

hepadnaviruses. In this context, it is important to keep in mind

that each pairwise inter-eZHBV distance as we observe them

today results from (i) the distance accumulated at the viral rate

during the time separating the endogenization of each two

sequences being compared (corresponding to B+C+E+F if

eZHBVl and eZHBVa are compared, for example; Figure 4)

and (ii) the distance accumulated on each sequence at the bird

neutral rate after endogenization (26A in Figure 4). Several inter-

eZHBV distances are more than 2-fold higher than the average

distances between extant hepadnaviruses, i.e., more than

260.27 = 0.54 for the region corresponding to group 1 eZHBVs,

and more than 260.19 = 0.38 for the region corresponding to

group 2 eZHBVs (Tables 2 and 3). Notably, most of these high

inter-eZHBV distances remain more than 2-fold higher than

distances between extant hepadnaviruses even when subtracting a

0.16 distance, which corresponds to a conservatively high estimate

of the distance accumulated at the bird genome rate assuming the

two eZHBVs being compared were both integrated 19 My ago.

The 0.16 estimate is based on the highest of the distances between

dark-eyed junco and zebra finch orthologs (eZHBVl), i.e., 26A in

Figure 4.

Phylogenetic Analyses
Sequences were aligned by hand using BioEdit 7.0.5.3 [67], and

ambiguous regions were removed. Bayesian and maximum

likelihood phylogenetic analyses were carried out using MrBayes

3.1.2 [68] and PHYML 3.0 [69], respectively. Nucleotide and

amino acid substitution models were chosen based on the Akaike

Information Criterion in jModelTest 0.1 [66], MrModeltest 2.3

[70], and ProtTest 2.4 [71]. eZHBVs were aligned at the amino

acid level with representative members of extant avian and

mammalian hepadnaviruses and analyzed using the rtREV (group

1 eZHBVs) and LG+G+F (group 2 eZHBVs) models in PHYML

and with a prior setting allowing model jumping between fixed-

rate amino acid models in MrBayes. eZHBVa, eZHBVj, and

eZHBVl orthologs were analyzed with the TPM2uf+G,

TPM2uf+G, and TIM3+G models of nucleotide substitution,

respectively, in PHYML and with the GTR+G, HKY+G, and

GTR+G models, respectively, in MrBayes. In order to verify the

identity of the bird specimens included in this study, we also

analyzed an alignment of a fragment of NADH2 nucleotide

sequence produced in this study, as well as GenBank NADH2

sequences available for these species and for representatives of the

families Paridae, Corvidae, Pycnonotidae, Turdidae, and Phasia-

nidae (Figure S1). This alignment was analyzed with the

TPM2uf+G model in PHYML and with the HKY+I+G model

in MrBayes. For maximum likelihood analyses, the robustness of

the branches was evaluated by non-parametric bootstrap analyses

involving 1,000 pseudoreplicates of the original matrix. Bayesian

analyses were run for at least one million generations, or until the

standard deviation of split frequencies between the two parallel

runs dropped below 0.01. Then, 25% of the sampled trees were

discarded before summarizing the trees. The sequences used for

the phylogenetic analyses are provided in Datasets S2, S3, S4, S5,

S6, S7.

Supporting Information

Dataset S1 FASTA file containing the 15 eZHBVs found
in the July 2008 assembly of the zebra finch genome (see
also Table 1).

Found at: doi:10.1371/journal.pbio.1000495.s001 (0.01 MB

DOC)

Dataset S2 Amino acid alignment (in FASTA format) of
group 1 eZHBVs (see Figure 1) and representatives of
known extant hepadnaviruses. Ambiguous regions, stop

codons, and frameshifts were removed. The names of the

sequences include the GenBank accession numbers.

Found at: doi:10.1371/journal.pbio.1000495.s002 (0.00 MB

DOC)

Dataset S3 Amino acid alignment (in FASTA format) of
group 2 eZHBVs (see Figure 1) and representatives of
known extant hepadnaviruses. Ambiguous regions, stop

codons, and frameshifts were removed. The names of the

sequences include the GenBank accession numbers.
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Found at: doi:10.1371/journal.pbio.1000495.s003 (0.01 MB XLS)

Dataset S4 Alignment of orthologous eZHBVl and 59

flanking region (in FASTA format) sequenced in various
passerine birds. The 59 end of eZHBVl corresponds to position

108 of the T. guttata sequence. The alignment includes the

sequence of the primer 1978F, located in the 59 flanking region of

eZHBVl, and hfr1, located within eZHBVl.

Found at: doi:10.1371/journal.pbio.1000495.s004 (0.00 MB XLS)

Dataset S5 Alignment of orthologous eZHBVa and 59

and 39 flanking regions (in FASTA format) sequenced in
various passerine birds. The 59 and 39 ends of eZHBVa

correspond to positions 769 and 1012, respectively, of the T. guttata

sequence. Positions 504–805 of the J. hyemalis sequence correspond

to an endogenous retrovirus solo LTR (closely related to the zebra

finch TguERVK9_LTR2g element; [41]) inserted within the

region orthologous to eZHBVa. The solo LTR is flanked by a 6-

bp target site duplication (GACCTT). The alignment includes the

sequence of the primer Scn3b-F, located in the 59 flanking region

of eZHBVa, which corresponds to the fourth exon of a predicted

gene homologous to human SCN3B, and that of the primer Scn3b-

R, located in the 39 flanking region of eZHBVa, which

corresponds to the third exon of the predicted scn3b gene.

Positions 1–59 and 1013–1076 of the T. guttata sequence

correspond respectively to the partial sequence of the fourth and

third exon of the predicted scn3b gene.

Found at: doi:10.1371/journal.pbio.1000495.s005 (0.01 MB XLS)

Dataset S6 Alignment of orthologous eZHBVj and 39

flanking region (in FASTA format) sequenced in various
passerine birds. The 39 end of eZHBVj corresponds to position

1209 of the T. guttata sequence. The alignment includes the

sequence of the primer 8718F, located within eZHBVj, and

8718R, located in the 39 flanking region of eZHBVj.

Found at: doi:10.1371/journal.pbio.1000495.s006 (0.01 MB XLS)

Dataset S7 Alignment (in FASTA format) of the NADH2
partial sequences used to construct the tree in Figure S1.
Found at: doi:10.1371/journal.pbio.1000495.s007 (0.01 MB XLS)

Figure S1 Phylogenetic tree of NADH2 sequences.
Numbers on branches correspond to bootstrap values and

posterior probabilities. For most species, there is strong support

grouping the sequence produced in this study and a NADH2

sequence of the same species available in GenBank, confirming the

identification of the specimens from which the tissues used in this

study come. The absence of support for the grouping of our P.

cincta and that found in GenBank is due to the fact that the

GenBank sequence is partial (Dataset S7). Phylogenetic analysis of

a reduced alignment including only the NADH2 portion

corresponding to the GenBank P. cincta sequence yields strong

support for the grouping of the sequence obtained in this study

with that in GenBank (bootstrap = 99, posterior probability = 1;

data not shown). There is no NADH2 sequence available for L.

punctulata in GenBank. While there is no support for the precise

position of our L. punctulata sequence, we note that it tends to group

with that of a congeneric species (L. cucullata).

Found at: doi:10.1371/journal.pbio.1000495.s008 (0.07 MB

DOC)

Table S1 Tissue samples used in this study. All

Estrildidae species were provided by the University of Washington

Burke Museum.The C. olivaceus DNA was provided by Drs. Claire

Loiseau and Ravinder Sehgal (San Francisco State University).

The J. hyemalis tissue was sampled from a dead specimen found in

CG’s backyard in Arlington, Texas.

Found at: doi:10.1371/journal.pbio.1000495.s009 (0.03 MB

DOC)
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