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Abstract

Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental
temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the
orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric
ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD), Lateral
Pyloric (LP), and Pyloric (PY) neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about
4-fold (Q10,2.3) as the temperature was shifted from 7uC to 23uC, the phase relationships of the PD, LP, and PY neurons
showed almost perfect temperature compensation. The Q10’s of the input conductance, synaptic currents, transient
outward current (IA), and the hyperpolarization-activated inward current (Ih), all of which help determine the phase of LP
neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in .1,000 computational models (with different
sets of maximal conductances) of a bursting neuron and the LP neuron. Many bursting models failed to monotonically
increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model
neurons’ currents had Q10’s close to 2. Together, these data indicate that although diverse sets of maximal conductances
may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q10’s of the
processes that contribute to temperature compensation of neuronal circuits.
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Introduction

The nervous systems of cold-blooded animals must function

across significant ranges of temperature despite the fact that the

signal transduction pathways and synaptic and intrinsic membrane

currents are all temperature-dependent. This is particularly

intriguing because one would not expect all cellular processes to

have the same temperature dependence, and therefore it is hard to

imagine that functional circuit integrity would necessarily be easily

maintained when temperature is altered. Nonetheless, temperature

compensation, that is maintenance of constant function as

temperature is altered, is an important property of circadian

rhythms [1,2] and has been reported in other systems as well [3].

All biological processes have characteristic Q10’s that describe

the changes in their rates as a function of temperature. Although

the Q10 for many biological processes is ,2, Q10’s for ion channels

can vary from 1.5 to almost 100. For example, the Q10’s for

activation and inactivation of some K+ channels are 1.8–4.6 [4],

many temperature sensing TRP channels have Q10’s higher than

10 [5], and some Ca2+ channels have inactivation rates with Q10’s

as high as 19 [6]. How different can the various Q10’s that govern

the intrinsic and synaptic conductances within a circuit be and still

allow appropriate function to be maintained despite environmen-

tal temperature change? Which attributes of circuit performance

are temperature dependent and which, if any, are temperature

compensated?

Cancer borealis, the crab used for this study, lives in the northern

Atlantic Ocean, and can be found from Newfoundland to Florida

[7,8,9]. While most C. borealis inhabit deeper waters (at depths of

800 m), they also are frequently found in both intertidal and

subtidal ecosystems foraging for food [7,8,9,10,11]. During the

summer at these shallow depths (ranging from 0–10 m), C. borealis

can experience temperature fluctuations ranging from 8uC to

24uC within a single day [10,11]. During the winter, C. borealis is

found at ocean temperatures ranging from 3uC to 16uC [8].

Presumably, the nervous system of these animals can cope with

such considerable temperature fluctuations.

The stomatogastric ganglion (STG) of marine crustaceans

generates two motor patterns that are responsible for the chewing

and filtering of food [12]. The pyloric rhythm is a triphasic motor

pattern driven by a three-neuron pacemaker ensemble (the single

Anterior Burster (AB) and two Pyloric Dilator (PD) neurons). The

Lateral Pyloric (LP) and Pyloric (PY) neurons fire on rebound from

inhibition by the pacemaker neurons. Previous work has indicated

that a number of processes can influence the phase of the LP and

PY neurons’ rebound firing. These include the strength and time

course of the inhibitory synapses that the LP and PY neurons

receive from the AB and PD neurons [13,14,15] and the
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conductances of the transient outward K+ current (IA) and the

hyperpolarization-activated inward current (Ih) [16,17,18].

The phase relationships of the network neurons are maintained

relatively constant as a function of frequency [15,19,20,21,22,23]

and during the animal’s growth [19,24]. This phase constancy

over a range of frequencies has been extensively studied in

preparations held at constant temperature. We now show that

although temperature drastically alters the frequency of the pyloric

rhythm, its phase relationships are remarkably temperature

invariant. This motivated us to examine the effects of temperature

on the synaptic and intrinsic membrane currents that have been

previously implicated in the control of phase in the pyloric rhythm.

By so doing, we attempt to account for the temperature

compensation of pyloric rhythm phase in terms of the effects of

temperature on some of its membrane conductances.

Although the pyloric rhythm is a ‘‘simple’’ neuronal circuit, its

dynamics involve the activation and inactivation of many intrinsic

and synaptic currents. To determine whether the biological results

‘‘automatically’’ arise from the effects of temperature on

membrane currents with similar Q10’s, we varied temperature in

two different computational models, one of a bursting pacemaker

neuron [25] and one of the LP neuron [26].

Results

Effects of Temperature on the Pyloric Rhythm
The triphasic pyloric rhythm of the STG is shown in the

extracellular recordings from the motor nerves exiting the STG in

Figure 1A. The top trace shows a burst of the PD neurons, the

second trace shows the activity of the LP neuron, and the bottom

trace shows the activity of the PY neurons. By convention, we call

Author Summary

The neural circuits that produce behaviors such as walking,
chewing, and swimming must be both robust and flexible
to changing internal and environmental demands. How
then do cold-blooded animals cope with temperature
fluctuations when the underlying processes that give rise
to circuit performance are themselves temperature-de-
pendent? We exploit the crab stomatogastric ganglion to
understand the extent to which circuit features are robust
to temperature perturbations. We subjected these circuits
to temperature ranges they normally encounter in the
wild. Interestingly, while the frequency of activity in the
network increased 4-fold over these temperature ranges,
the relative timing between neurons in the network—
termed phase relationships—remained constant. To un-
derstand how temperature compensation of phase might
occur, we characterized the temperature dependence
(Q10’s) of synapses and membrane currents. We used
computational models to show that the experimentally
measured Q10’s can promote phase maintenance. We also
showed that many model bursting neurons fail to burst
over the entire temperature range and that phase
maintenance is promoted by closely restricting the model
neurons’ Q10’s. These results imply that although ion
channel numbers can vary between individuals, there may
be strong evolutionary pressure that restricts the temper-
ature dependence of the processes that contribute to
temperature compensation of neuronal circuits.

Figure 1. Quantification of pyloric network output at different temperatures. (A) Example extracellular nerve recordings of the pyloric
rhythm at cold temperature (T = 7uC). The onset and offset delay of each neuron relative to the onset of PD neuron burst are indicated. Horizontal
scale bar, 1 s, for both (A) and (B). (B) Example extracellular nerve recordings from the same preparation as in (A) but at warm temperature (T = 19uC).
The same delay measurements are indicated as in (A). (C) The frequency of the pyloric rhythm plotted as a function of temperature from T = 7uC to
T = 23uC (n = 7). (D) The mean phase (delay divided by cycle period) values of the pyloric rhythm plotted as a function of temperature from T = 7uC to
T = 23uC (n = 7).
doi:10.1371/journal.pbio.1000469.g001

Temperature Compensation of Phase
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the beginning of the PD neuron burst the start of the pyloric

rhythm cycle, and the other neurons are referenced to the PD

neuron activity. One cycle period is defined as the time between

the start of one PD burst and that of the subsequent PD burst. The

phases at which each neuron burst starts and ends are defined as

the delays to those events divided by the cycle period.

All of the animals used in this study were acclimated to 11uC for

at least 3 wk before use. The frequency of the pyloric rhythms

from 23 animals at 11uC varied from 1.0 Hz to 1.5 Hz and

exhibited a mean frequency of 1.2060.11 Hz (S.D.). The median

pyloric frequency of these acclimated animals was not significantly

different from that of a non-acclimated population described

previously (p = 0.35, Mann-Whitney rank sum test, n = 45 for the

non-acclimated population) [15]. Interestingly, the variance of

pyloric frequency in the acclimated population was lower than that

in the non-acclimated population (S.D. = 0.21, p,0.05, Levene

test).

To quantify the effects of temperature on frequency and phase

of the pyloric rhythm, we recorded from the motor nerves in seven

preparations that were gradually warmed from 7uC to 23uC
(Figure 1). Figure 1A shows the pyloric rhythm at 7uC, and

Figure 1B shows recordings from the same preparation at 19uC.

Note that the frequency increased substantially, but the relative

timing of the triphasic pattern of activity was largely preserved.

Figure 1C presents the data pooled from the seven experiments.

Over this temperature range the frequency increased about 4-fold

from 0.760.1 Hz to 2.960.4 Hz (S.D.), with a Q10 of 2.3260.2

(Table 1). Temperature had a significant effect on pyloric

frequency (p,0.01, one-way repeated measures ANOVA, n = 7).

Remarkably, although the frequency varied considerably as a

function of temperature, the phase of firing of the pyloric neurons

was virtually unaltered by temperature (Figure 1D, n = 7), as

indicated by Q10’s not significantly different from 1 (Table 1). We

did not find evidence for hysteresis as there was no statistically

significant difference between increasing temperature from 7 to

23uC versus decreasing temperature from 23 to 7uC (p = 0.410,

two-way repeated ANOVA, n = 4).

The Effects of Temperature on Membrane Potential
Trajectories

To gain further insight into how phase relationships might

remain stable despite the increase in frequency as a function of

temperature, we examined the intracellular waveforms of the

pyloric neurons as a function of temperature. Figure 2A shows

simultaneous intracellular recordings from the PD, LP, and PY

neurons in a single preparation at temperatures from 7uC to 23uC
(circuit diagram; Figure 2B). Again, while the frequency

dramatically increased, the characteristic triphasic motor pattern

was maintained, and the intracellular waveforms were similar at all

temperatures. This can be seen most effectively by scaling the

membrane potential trajectories of the intracellular waveforms to

the cycle period (Figure 2C). The membrane potential trajectories

of the pyloric neurons are very similar when they are temporally

scaled.

Figure 2B shows a simplified connectivity diagram for the

pyloric rhythm, and illustrates that the LP neuron is inhibited by

the pacemaker neurons and the PY neurons. The phase of LP

firing is known to depend both on its synaptic inputs (Figure 2B)

and on its intrinsic, voltage-dependent membrane currents

[13,14,17,18,27,28,29]. The effects of temperature on the

Inhibitory Postsynaptic Potentials (IPSPs) recorded in the LP

neuron are plotted in Figure 2D. Note that this is a measure of the

combined, total IPSP, consisting of the IPSP evoked first by the PY

neurons, followed by the IPSPs evoked by the AB and PD neurons

(Figure 2C). We measured the total IPSP as the amplitude of the

membrane potential excursion from the end of the LP burst to its

most hyperpolarized value (the first component comes from the

PY neurons, and the second sharp hyperpolarization from PD/AB

neuron activity). The total IPSPs recorded in LP were not

statistically different over the temperature range shown

(Q10 = 0.9260.1, p = 0.256, one-way repeated measures ANOVA;

Table 1).

Effects of Temperature on Synaptic Currents
Although the total IPSPs in LP are temperature compensated,

this does not necessarily mean that the synaptic currents are also

constant, as the IPSP waveform and amplitude depend on the

other membrane conductances and time constants as well as the

synaptic current. We measured the LP neuron input conductance

in voltage clamp as a function of temperature by applying

tetrodotoxin (TTX) and picrotoxin (PTX) to remove action

potentials and block most of the synaptic inputs to the LP neuron.

We then stepped the voltage from 260 mV to 280 mV in 5 mV

steps, measured the resulting currents, and calculated the input

conductance. Figure 3A shows that the input conductance

increased with temperature (p,0.002, one-way repeated measures

ANOVA), with a Q10 of 1.5660.17.

The apparent lack of change in IPSP amplitude from 7uC to

23uC despite a nearly 2-fold increase in input conductance over

that range was intriguing. Therefore, we voltage-clamped the LP

neuron during the ongoing pyloric rhythm and directly measured

the total Inhibitory Postsynaptic Currents (IPSCs) over the same

range of temperatures. Figures 3B and 3C show the IPSCs

measured at 7uC and 19uC at three different voltages, 260 mV,

280 mV, and 2100 mV. The timing of PY and PD neuron

activity is shown below the IPSC recordings so that the PY and

AB/PD components of the IPSCs can be seen. At 260 mV at 7uC
there was little or no net current seen during PY time, but the

current was clearly outward during PD time. At 19uC a small

Table 1. Temperature dependence of pyloric network
parameters.

Level Process Q10 S.E. m?0? p Value

Network Cycle Frequency 2.32 0.20 yes ,0.001

Phase Relationships PD off 1.02* 0.07 no 0.083

LP on 1.00* 0.04 no 0.887

LP off 0.94* 0.05 no 0.322

PY on 1.01* 0.01 no 0.090

PY off 1.04* 0.03 no 0.223

Synaptic IPSPs onto LP neuron 0.92* 0.10 no 0.256

IPSCs onto LP neuron 2.29 0.25 yes ,0.001

LP Membrane gA 1.90 0.44 yes ,0.001

Currents IA activation rate 3.00 0.16 yes ,0.001

IA inactivation rate 3.78 0.18 yes ,0.001

gh 3.13 0.46 yes ,0.001

Ih activation rate 3.36 0.18 yes ,0.001

Input Conductance 1.56 0.17 yes ,0.001

*These Q10’s were highlighted for their low temperature sensitivities (i.e.,
Q10,1). To test whether the slopes (m) of these Q10’s were significantly
different than zero, t tests and their associated p values are reported in the
right-hand columns.
doi:10.1371/journal.pbio.1000469.t001
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outward current is observed during PY time and a much larger

outward current during PD time. The waveforms seen at 280 mV

are complex because the PY and AB glutamatergic IPSCs reverse

at a more depolarized potential than does the cholinergic PD

IPSC [15,30]. At 2100 mV, all components were inward.

The synaptic currents recorded at 260 mV are most relevant to

understanding the membrane potential trajectories seen during the

ongoing rhythm (Figure 2A,C). Accordingly, the total IPSCs

measured at 260 mV as a function of temperature are plotted in

Figure 3D. These exhibit a Q10 of 2.2960.25 (n = 7). Figure 3E

shows superimposed membrane potential trajectories at three

temperatures, and their corresponding IPSCs recorded from the

same preparation (at 260 mV). Together, these data illustrate that

despite the virtually superimposable voltage trajectories, the

underlying IPSCs are almost 5-fold larger at the higher

temperatures. Moreover, it appears that this increase would more

than compensate for the modest increase in input conductance

over the same range (Q10 = 1.5660.17; Figure 3A). This suggests

that the constant waveform can only partially be accounted for by

the changes in input conductance and IPSC amplitude.

Effects of Temperature on IA and Ih
Previous work demonstrated the importance of both the

transient outward current, IA, and the hyperpolarization-activated

inward current, Ih, on the phase at which the LP and PY neurons

recover from inhibition [15,16,17,27]. Consequently, we mea-

sured the effects of temperature on these currents in voltage clamp,

as we hypothesized that changes in these currents could contribute

to the temperature compensation of phase (Figure 1D).

Figure 4A illustrates the effects of temperature on IA. IA was

measured as the difference current between the outward currents

evoked from a holding potential of 2100 mV and those evoked

from 240 mV. The currents measured at voltages from 240 mV

to +30 mV in 10 mV steps are shown at five temperatures from

7uC to 23uC (Figure 4A). As the temperature was increased, the

amplitude of the peak outward current increased (Figure 4B). The

activation rate as well as the inactivation rate of IA also increased

as a function of temperature (Figure 4C and 4D, respectively). The

Q10 of the IA inactivation rate was 3.78, the steepest temperature

dependence of the parameters we measured (Table 1).

Lastly, we measured the temperature dependence of Ih. Because

Ih is a depolarizing current that is activated only at hyperpolarized

potentials, its properties allow Ih both to respond to inhibitory

synaptic currents and to play an opposing role to IA in determining

the latency to firing after synaptic inhibition. We measured Ih

using 12 second hyperpolarizing voltage steps from 250 mV to

2120 mV in 5 mV steps (Figure 5A) at different temperatures.

The amplitude of the current (Figure 5B) as well as its activation

rate increased at higher temperatures (Table 1).

The Effects of Temperature on Models of a Bursting
Pacemaker Neuron

Temperature increased the frequency of the pyloric rhythm

(Figure 1). The membrane properties of the PD/AB pacemaker

Figure 2. Similarity of membrane potential trajectories and IPSPs of the pyloric neurons at different temperatures. (A) Simultaneous
intracellular recordings of PD, LP, and PY neurons of the pyloric rhythm at different temperatures (T = 7, 11, 15, 19, and 23uC, respectively). Vertical
scale bar, 260 mV to 250 mV. Horizontal scale bar, 1 s. (B) Simplified diagram of the pyloric circuit. The pacemaker kernel is comprised of the AB
neuron and two electrically coupled PD neurons. The follower cells include a single LP neuron and several electrically coupled PY neurons. Filled
circles represent inhibitory chemical synapses; resistor symbols represent electrical coupling. (C) Overlays of 3 cycles of PD, LP, and PY neuron activity
recorded intracellularly at three different temperature (T = 7uC, T = 11uC, T = 19uC; blue, black, pink, respectively) from the same preparation. These
traces were scaled for cycle period and then superimposed upon one another. Vertical scale bar, 10 mV. Horizontal scale bar, 1 duty cycle. (D) Total
IPSPs recorded in LP as a function of temperature from T = 7uC to T = 23uC (n = 7).
doi:10.1371/journal.pbio.1000469.g002
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group are the most important determinant of pyloric frequency

[31,32,33]. Consequently, we were interested to determine

whether increases in frequency with increasing temperature in

bursting neurons are to be generally expected. Therefore, we

studied the effects of temperature on model bursting neurons [25],

whose currents were initially based on those recorded from lobster

STG neurons [34]. We first generated 1270 models, all of which

were bursting at 23.5uC, but which differed in the maximal

conductances of their 7 membrane currents. We then changed the

temperature of all of the models, using a Q10 of 2 for all of the

activation and inactivation rates of the currents. Figure 6 shows

the effects of temperature on 7 of the 1,270 models studied and

illustrates that models with differing sets of maximal conductances

varied dramatically in their response to temperature.

Only 60.5% of the models showed bursting over the entire

range of temperatures and increased monotonically in frequency

over the full temperature range. Of this 60.5%, 68.5% maintained

approximate constant duty cycle over the entire temperature

range, a feature that would promote phase compensation in the

network.

The remaining 39.5% of the models either did not burst over

the entire range or displayed decreases in frequency over at least

some of the temperature range (Figure 6B–G). Together these data

indicate that the maximal conductances of the currents are

important in determining how that particular neuron will behave

in response to a temperature change.

The Effects of Temperature on Phase Compensation in
Model LP Neurons

Taylor et al. [26] recently developed a family of 1304 LP

neuron models, each of which has different values of its maximal

conductances and all of which fit a set of criteria matching the

biological LP neuron. We used this set of LP neuron models to ask

whether the temperature dependence of IA and Ih contribute to

temperature compensation of the LP neuron’s phase. Figure 7A

shows the results of a simulation in which we varied the

temperature of a model LP neuron. In this set of simulations, we

compared two conditions: (a) all model Q10’s were set to 1, and (b)

the Q10’s of IA and Ih were replaced by the experimentally

measured values (Figures 4 and 5). The LP onset phase typically

became more delayed as the frequency was increased

(Figure 7A,B,C; p,0.0001, Kruskal-Wallis test, n = 1,063), but

the biologically measured Q10’s decreased this effect (p,0.0001,

sign test on 23uC data, n = 1,063) and increased the extent to

which the LP maintained constant phase as a function of

temperature.

Figure 3. Input conductance and IPSCs as a function of
temperature. (A) Input conductance of the LP neuron as a function
of temperature was measured in the presence of 1027 M TTX and
1025 M PTX in the passive range (260 to 280 mV). (B) Example IPSCs of
the LP neuron recorded at cold temperature (T = 7uC) at holding
potentials of 260, 280, and 2100 mV. The corresponding extracellular
recordings of the pyloric dilator nerve (pdn) and pyloric nerve (pyn)
showing the corresponding PD and PY bursts are shown schematically.
Vertical scale bar, 5 nA. Horizontal scale bar, 400 ms. (C) Example IPSCs
from the same LP neuron as in (A) but at warmer temperature
(T = 19uC). (D) Amplitude of the total IPSC at 260 mV as a function of
temperature from T = 7uC to T = 23uC (n = 7). (E) Left: Overlay of LP
waveform at temperatures of 7, 19, and 23uC from the same
preparation. Horizontal scale bar, 20% duty cycle. Vertical scale bar
260 to 250 mV. Right, overlay of the corresponding total IPSC of the
LP neuron at 260 mV at temperatures of 7, 19, and 23uC. Horizontal
scale bar, 20% duty cycle. Vertical scale bar, 4 nA.
doi:10.1371/journal.pbio.1000469.g003

Temperature Compensation of Phase
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We then examined the effects of changing all of the model Q10’s

to 1.5, 2.0, and 3.0 (Figure 7D,E,F, respectively) and again

compared the effects of using these default Q10’s for IA and Ih

(blue) to the condition in which they had the experimentally

determined values (red). These plots show that in the ‘‘default’’

(blue) condition, temperature affected the LP onset phase for all

Q10’s (p,0.0001 for all three Q10’s, Kruskal-Wallis test, n = 1,148,

1,255, and 1,109, respectively). For the blue condition, LP onset

phase came later at high temperatures for Q10 = 1.5, became

approximately temperature compensated for Q10 = 2.0, and

became considerably ‘‘overcompensated’’ for Q10 = 3.0 (slopes

were significantly different, p,0.0001, Kruskal-Wallis test,

n = 1,012). Note that the differences between the red and blue

conditions were smaller for larger Q10 values (at 23uC, there was a

significant effect of Q10 on the difference between red and blue

conditions, p,0.0001, Kruskal-Wallis test, n = 1,138; all pairwise

differences between Q10’s were significant at p,0.0001, rank sum

test with Bonferroni correction).

Discussion

Poikilotherms often face considerable temperature fluctuations

during a given day or over extended periods of time. This poses a

series of interesting questions for the nervous system, as it needs to

maintain its important functions despite these environmental

perturbations. Many previous studies have documented the effects

Figure 4. Temperature dependence of IA conductance, activation rate, and inactivation rate. (A) Family of IA currents at 7, 11, 15, 19, and
23uC elicited in response to depolarizing steps from 240 mV to +30 mV in 10 mV steps. (B) Pooled data for the temperature dependence of IA peak
conductance measured at +20 mV (n = 6). (C) Temperature dependence of IA activation rates was measured as the reciprocal of the time to maximal
current elicited at +20 mV (from the time of the depolarizing step). (D) Temperature dependence of IA inactivation rates was measured as the
reciprocal of the time to decay to half of the maximal current from the time of maximal current elicited at +20 mV.
doi:10.1371/journal.pbio.1000469.g004

Temperature Compensation of Phase
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of temperature on a variety of behaviors and physiological

processes [3,35,36,37,38,39]. Other studies have looked at the

effects of temperature on individual biochemical reactions, ion

channels, synapses, or other cellular mechanisms [6,40,41,42,

43,44,45]. Nonetheless, much less work has been done directly on

the effects of temperature on behaviorally relevant neuronal

circuits. This study is one of relatively few to attempt to account

for the effects of temperature on a neuronal circuit in terms of the

cellular processes that contribute to those circuit behaviors.

The General Problem of Temperature Compensation
By convention, processes with Q10’s less than 2 are considered

to be relatively temperature insensitive, and behaviors with

emergent system Q10’s less than 2 are conventionally termed

‘‘temperature compensated.’’ The best known example of

temperature compensation is that shown by the circadian rhythm,

and its temperature compensation is considered one of its salient

features. Although the molecular basis underlying circadian

rhythms have been well-elucidated [1], the mechanisms that

underlie their temperature compensation remain unresolved.

However, a recent study on temperature compensation in

Neurospora [2] argues that temperature compensation arises from

compensatory changes in the rates of phosphorylation and

degradation of proteins that are part of the molecular clock.

Zhurov and Brezina [46] have provided an elegant study of a

different form of temperature compensation in the Aplysia

neuromuscular system. In this preparation, the strength of

neuromodulatory effects on muscle contraction was maintained

over a temperature range from 15uC to 25uC. Paradoxically, the

release of neuromodulators that modulate neuromuscular contrac-

tion decreased 20-fold when temperature was increased. However,

the decrease in neuromodulator release was partially compensated

by increased neuromodulator efficacy. Thus in this particular

example, physiological temperature compensation is achieved by

opposing temperature dependencies of related functions.

In this study, we describe a form of temperature compensation

that occurs in a rhythmically active neural circuit. When we

rapidly varied the temperature of the in vitro stomatogastric

Figure 5. Temperature dependence of Ih conductance and activation rate. (A) Family of Ih currents at 11, 15, 19, and 23uC elicited in
response to hyperpolarizing steps from 250 mV to 2120 mV in 5 mV steps from a holding potential of 250 mV (10 mV steps shown here). (B)
Pooled data for the temperature dependence of Ih peak conductance measured at 2110 mV (n = 7). (C) Temperature dependence of Ih activation
rates were measured as the reciprocal of the activation time constants obtained from single exponential fits of the current at 2110 mV (n = 7).
doi:10.1371/journal.pbio.1000469.g005

Temperature Compensation of Phase
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nervous system, the pyloric network frequency varied about 4-fold,

from ,0.7 Hz at low temperatures to ,2.9 Hz at 23uC
(Figure 1C). At the same time, the phase relationships of the

pyloric rhythm were tightly maintained over this large frequency

range (Figure 1). The almost perfect temperature compensation of

pyloric rhythm phase (Table 1) described here surpasses that

described in many systems, including some circadian rhythms

[2,46].

All of the component processes we measured increased in

amplitude and/or rate with temperature. However, given that

some of these component processes—e.g., IA and Ih—have

opposing functional roles, temperature compensation of the phase

relationships of the pyloric neurons appears to emerge as a

consequence of similar temperature dependencies of opposing

cellular mechanisms. Figure 8 shows a cartoon of the main

processes that are likely to control the phase of the LP neuron’s

activity. LP’s activity is terminated by PY neuron activity, and then

additionally inhibited by the AB/PD neurons during the

pacemaker burst. Rebound firing after the AB/PD burst is

enhanced by Ih activation and delayed by IA activation [17,27]. An

increase in the IPSC amplitude will tend to increase the activation

of Ih and also favor the voltage-dependent deinactivation of IA.

Consequently, as temperature increases, these opposing time and

voltage-dependent processes, as a first approximation, may remain

temporally scaled with each other. The LP off-phase is determined

by the phase of PY onset, which is itself maintained constant,

presumably by similar mechanisms.

Phase and Frequency in Motor Systems
At constant temperature, the pyloric network phase relation-

ships are also maintained despite changes in frequency

[13,15,19,21,22,23,47]. This has been extensively studied because

it is not obvious how to turn the constant delays associated with

the fixed dynamics of synaptic currents or other membrane

currents into a mechanism that confers phase constancy. Again, as

illustrated in Figure 8, it has been suggested that the latency to

firing of a follower neuron is controlled by multiple processes,

including synaptic depression, IA, and Ih [20,48]. At constant

temperature, the frequency dependence of synaptic depression of

the AB/PD IPSP is balanced by the time-dependence of activation

of Ih and deinactivation of IA [24].

Thus, the mechanisms that allow for phase maintenance at

constant temperature seem to employ some of the same cellular

mechanisms that promote temperature compensation. This is not

necessarily surprising, because the strong evolutionary pressure

that gave rise to robust phase maintenance may have also forced a

set of solutions that would be robust enough to compensate for the

frequency changes that arise from changes in temperature.

The ability to maintain phase independent of frequency has

been well-described in the neuronal control of swimming in

lamprey, leech, and crayfish [49,50,51]. In these systems, phase is

constant over a wide range of frequencies [49,50,51], and it would

be interesting to see how well temperature compensated they are.

It is surprising that in the zebra finch, a homeotherm, in which

singing behavior is highly stereotyped, cooling specific brain areas

Figure 6. Diverse electrical behavior of model bursting neurons in response to changing temperature. Examples that illustrate the
diversity of firing patterns of simulated model neurons in response to changing temperatures from 23.5uC to 7uC. (A) Neuron that increases burst
frequency as a function of temperature. (B) Neuron that decreases burst frequency sharply from 11 to 15uC, then subsequently increases with
temperature. (C) Neuron that decreases burst frequency from 11 to 23.5uC. (D) Neuron that transitions from tonic spiking to bursting behavior at
19uC. (E) Neuron that transitions from tonic spiking at 11uC, then increases burst frequency with increase in temperature. (F) Neuron that transitions
from irregular spiking to bursting behavior. (G) Neuron that switches its firing pattern twice: the neuron tonically spikes at 7uC, bursts at 11uC, reverts
to spiking at 15uC, and then switches to bursting at 19 and 23.5uC.
doi:10.1371/journal.pbio.1000469.g006
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Figure 7. Effects of temperature on a population of 1304 LP models. (A) Voltage traces of an example LP model at different temperatures,
for a single cycle of simulated pyloric synaptic input. Blue traces are for a model with all Q10’s set to one. Red traces are the same model, but with the
Q10’s for IA and Ih set to their measured values. Lower panels show the synaptic conductances injected into the model. At each temperature, the
synaptic input had a frequency as given by the linear fit in Figure 1C. The x-axis in each panel has been scaled to show the voltage versus phase. (B)
LP onset phase versus temperature for the same model as shown in (A). Dashed lines here and in other panels show the bounds of the central ,85%
of the distribution of LP phase onsets observed experimentally [15]. (C) LP onset phase versus temperature for all 1,304 models. Line shows the
median LP onset phase for all models that fired at that temperature. Shaded region shows the range of the 25th to 75th percentile. (D) Blue
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in the motor pathway leads to uniform elongation of the song [52].

We speculate that the strong temperature dependence of

frequency and temperature-independence of phase may not be

unique to the pyloric circuit of the stomatogastric nervous system

and may be a useful property to other animals, allowing them to

cope with environmental challenges in their natural setting.

The Effects of Temperature on Frequency and Phase in
Computational Models

Our commonsense knowledge of the world may lead us to

believe that achieving robust behavior in cold-blooded animals

over a range of temperature is simpler than it is in fact. The non-

trivial nature of this problem is revealed in the computational

studies reported here. In both cases, we employed families of more

than 1,000 model neurons that varied in terms of the maximal

conductances of their underlying currents but were otherwise

identical. These modeling studies illustrate the extent to which

robust physiological behavior requires that the temperature

dependence of the biological processes must be closely regulated.

Many of the 1,270 pacemaker models (Figure 6) failed to

maintain a bursting phenotype over the entire temperature range

or else showed interesting non-monotonic changes in frequency. In

some cases bursting frequency decreased as temperature increased

between certain temperature points (Figure 6B and E) or along the

entire temperature range (Figure 6C). One implication of this

model is that not all combinations of currents that give rise to

bursting at one temperature will necessarily provide robust

behavior at other temperatures. Furthermore, the requirement

that a neuron or group of neurons show increased burst frequency

in a clean monotonic fashion as temperature is increased may

considerably restrict the parameter space in which ‘‘good enough’’

solutions may reside.

Although there has been a good deal of both experimental and

theoretical work on the importance of both IA and Ih in

determining phase in the pyloric network, without the computa-

tional studies shown in Figure 7, it was difficult to know whether

the specific Q10’s of IA and Ih would favor temperature

compensation of phase. The first result from these studies

(Figure 7C) was that the measured Q10’s of IA and Ih promote

temperature compensation of phase. This effect was most

pronounced when it was examined with a background of low

Q10’s of the other currents in the models (Figure 7C,D). When the

background Q10’s were higher (Figure 7E,F), although IA and Ih

still statistically altered the phase onset of the LP neuron, the

extent of their influence decreased.

Taken at face value, the data we obtained with the 1,304 LP

neuron models (Figure 7) suggest that temperature compensation

of phase will be optimized when the Q10’s of all of the currents that

contribute to phase are close to the Q10 of the pyloric rhythm

frequency, which was ,2.3 (Figure 1).

General Implications
Although it is possible for the same neuron in different animals

to have widely disparate sets of current densities for ion channels

[15,53,54], the Q10’s of these currents and other biological

processes must be presumably regulated within a certain range.

The actual number of enzyme molecules or ion channels in a given

neuron in an individual animal may vary widely according to the

life history of the animal. On the other hand, the temperature-

dependence of biological enzymes and ion channels has arisen as a

result of evolution working on the structure of each protein

molecule, so one would naively predict that the Q10’s of a given

process measured across animals of the same species might vary

less than the number of ion channels or enzyme molecules. Of

course, post-translational and other history-dependent processes

could also influence the Q10’s of many biological processes, so the

process of producing both robust behavior and temperature

compensation over a large temperature range requires the

coordinated regulation of myriad biological processes.

Methods

Animals
Cancer borealis were purchased from Commercial Lobster

(Boston, MA) and maintained in tanks containing artificial

seawater at 11uC for 3 wk before use.

Solutions
C. borealis physiological saline was composed of 440 mM NaCl,

11 mM KCl, 13 mM CaCl2, 26 mM MgCl2, 11 mM Trizma

base, and 5 mM Maleic acid, pH 7.4–7.5. All reagents were

purchased from Sigma Aldrich.

Electrophysiology
The stomatogastric nervous system was dissected out of the

animals and pinned out in a Sylgard (Dow Corning) coated plastic

Petri dish containing chilled saline (11uC). In all cases, we worked

only with fully intact stomatogastric nervous system preparations

Figure 8. Schematic of the processes that contribute to the
control of phase in the LP neuron. LP neuron activity is terminated
by inhibitory synaptic input (light blue arrow) and the onset of this
synaptic input is initiated by the PY neurons (orange). PY neuron
activity continues until the PD/AB neurons start to fire (purple), at which
time the PD/AB neurons strongly inhibit the LP neuron. After the end of
the PD/AB burst, the LP starts firing with a delay that is decreased by
activation of Ih (red arrow) and increased by the activation of IA (dark
blue arrow).
doi:10.1371/journal.pbio.1000469.g008

simulations had a Q10 of 1.5 for all intrinsic conductances, and the red simulations had the Q10’s for IA and Ih set to their measured values. (E) A
‘‘default’’ Q10 of 2.0 for all intrinsic conductances. (F) Default Q10 of 3.0. Note that (A), (B), and (C) are not directly comparable with (D), (E), and (F),
because (A), (B), and (C) had a Q10 of 1.0 for the synaptic conductances, whereas (D), (E), and (F) used the experimentally measured Q10 of 2.3 for the
synaptic conductances.
doi:10.1371/journal.pbio.1000469.g007
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that included the commissural and esophageal ganglia with two

intact superior esophageal nerves and two intact inferior

esophageal nerves.

The preparations were continuously superfused with physiolog-

ical saline. The temperature of the superfusing saline was

controlled using a Peltier device purchased from Warner

Instruments. The temperature was changed at about 1 degree/

min when only extracellular recordings were made and about 1

degree/2–3 min when intracellular recordings were also made. As

the temperature was increased we noticed that the ganglia swelled

and/or moved. This often necessitated small movements of the

intracellular electrodes (up or down, respectively, as the temper-

ature was increased or decreased) to maintain the intracellular

recordings. When the electrodes were repositioned carefully,

return to 11uC showed no changes in resting potential, firing

properties, or input resistance. If the electrodes were not

repositioned slightly, penetrations were usually lost with large

temperature changes. The preparations were maintained at their

target temperature for 10 min before data were taken.

Vaseline wells were placed around motor nerves and extracel-

lular recordings were obtained using stainless steel pin electrodes

placed in the wells and amplified using an A-M Systems

differential amplifier. Intracellular recordings were obtained from

cell bodies in the STG using 10–30 MV glass microelectrodes

pulled with a Flaming/Brown micropipette puller (Sutter Instru-

ment, Co.) The microelectrode solution contained 0.6 M K2SO4

and 20 mM KCl. Data were acquired using a Digidata 1200 data

acquisition board (Axon Instruments) and analyzed using Clampfit

9.0 (Axon Instruments) Spike2 v 6.04 (Cambridge Electronic

Design) and/or MATLAB 7.1 (Mathworks). Statistical analyses

were performed using the SigmaPlot 10 and SigmaStat software

packages (Jandel Scientific).

Input conductance was measured in two electrode voltage

clamp by stepping the membrane from 260 mV to 280 mV in

5 mV steps, measuring the resulting currents, and then calculating

the conductance.

IPSCs were measured using two electrode voltage clamp during

the ongoing rhythm. IPSCs were measured in the LP neuron at

membrane potentials from 260 mV to 2120 mV in 5 mV steps.

Each holding potential was maintained for 8–12 s, and the

membrane potential was returned to 260 mV in between each

voltage step for at least 8–12 s.

Ih and IA were both measured in the presence of 1027 M TTX,

1025 M PTX, and 1022 M TEA. Ih was measured at membrane

potentials from 250 mV to 2120 mV in 5 mV steps using 12 s

pulses with 12 s at 250 mV between each pulse. IA was measured

as the difference current between steps taken from a holding

potential of 2100 mV and those taken from a holding potential of

240 mV. Currents were recorded from 240 mV to +30 mV at

10 mV intervals using pulses of 1.5 s following a 1.5 s prepulse.

Q10 Calculations
To characterize and compare the temperature dependencies of

various parameters of the pyloric network, we used a modified

Arrhenius equation to determine the temperature coefficient, Q10.

The Q10 is a conventional measure used to describe how much a

given rate process changes over a 10uC temperature change and

defined as [rate(T+10u)/rate(T)] [55]. A given parameter p was

plotted against temperature T in a semilog plot and the Q10 value

was then extracted from the slope of the linear regression (m) [3].

Q10~1010m ð1Þ

m~
d log P

dT
ð2Þ

The standard error of the Q10 (seQ10) was calculated by

propagation error from the slope and the standard error of the

slope (sem) of the linear regression [56]:

seQ10
~sem

:ln10:1010mz1 ð3Þ

Although the alternative Arrhenius activation energy values are

implicit in our analyzed data, we did not express this more

physical description due to the non-unitary nature of our

parameters (i.e., they are not simple processes with a single rate-

limiting barrier).

The Bursting Pacemaker Models
The model used to simulate bursting neurons has been

previously described [25]. Briefly, this contains seven active

voltage-dependent conductances, a leak conductance, and an

algorithm for activity-dependent homeostatic regulation of max-

imal channel conductances. We added to this model the ability to

control the temperature sensitivity (Q10) of all channel activation

and inactivation dynamics. For simplicity we set the Q10 of all the

activation and inactivation rates equal to 2. All values for m‘, h‘,

tm, th, and p are as found in Liu et al. [25] but modified to

incorporate the Q10.

To create a population of model bursting neurons, we initiated

1,500 simulations with random initial values for all seven active

conductances. Each model was subject to 1 h of simulated activity-

dependent homeostatic regulation at the model’s default temper-

ature of 23.5uC. Models that showed poor bursting behavior after

this period were excluded, resulting in a population of 1,270 model

neurons that were bursting at 23.5uC and which had a variety of

different values of the maximal conductances for the voltage-

dependent currents. We then turned off the self-tuning function in

these neurons and used them as a set of models with different

underlying conductances to probe the extent to which they

maintained functional bursting activity over a wide range of

temperatures.

Each model was run at 7, 11, 15, and 19uC—the same

temperatures used in the biological studies. Voltage traces from

each of these simulations were analyzed to determine how the

bursting behavior varied with temperature. Bursting behavior—as

measured by slow wave frequency—was extracted from each

simulation using auto-correlation of a 10 s sample of the voltage

trace. Here we define slow wave frequency as low-frequency

membrane oscillations. We identified the frequency of these

oscillations as the lowest frequency peak in the autocorrelogram of

the voltage waveform. If this peak had an autocorrelation less than

0.05, we instead used the frequency corresponding to the greatest

autocorrelation (this is uncommon and corresponds to very

irregular activity).

To determine whether the bursting neurons maintained duty

cycle as a function of temperature, we calculated the coefficient

of variation (CV) of each model’s duty cycle. The bounds used to

define the population of model bursting neurons that exhibited

‘‘constant duty cycle’’ were chosen to contain the central ,85%

of the experimental data (PD off phase). Models exhibiting CVs

of duty cycle across temperature within this bound were

classified as having constant duty cycle, while those with CVs

above this value were classified as having a ‘‘non-constant duty

cycle.’’
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The LP Neuron Models
Simulations to determine how the Q10’s of IA and Ih affect LP

phase onset were performed using the LP model described in

Taylor et al. [26]. This model was modified so that Q10’s could be

associated with all voltage-gated and synaptic conductances. For

each voltage-gated conductance, there was a Q10 for the maximal

conductance, another for the activation rate, and another for the

inactivation rate. The reference temperature was 10uC, as the

model was originally designed to mimic LP’s behavior at this

temperature. Reversal potentials (and the GHK relation for the

calcium current) were not changed with temperature, as these

effects are small over the temperature range used.
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