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Dendritic spines are the main postsynaptic site of excitatory contacts between neurons in the central nervous system.
On cortical neurons, spines undergo a continuous turnover regulated by development and sensory activity. However,
the functional implications of this synaptic remodeling for network properties remain currently unknown. Using
repetitive confocal imaging on hippocampal organotypic cultures, we find that learning-related patterns of activity
that induce long-term potentiation act as a selection mechanism for the stabilization and localization of spines.
Through a lasting N-methyl-D-aspartate receptor and protein synthesis–dependent increase in protrusion growth and
turnover, induction of plasticity promotes a pruning and replacement of nonactivated spines by new ones together
with a selective stabilization of activated synapses. Furthermore, most newly formed spines preferentially grow in
close proximity to activated synapses and become functional within 24 h, leading to a clustering of functional
synapses. Our results indicate that synaptic remodeling associated with induction of long-term potentiation favors the
selection of inputs showing spatiotemporal interactions on a given neuron.
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Introduction

Integration of synaptic signals during learning processes is
critical to the function of cortical networks. This processing is
achieved through various mechanisms that involve gener-
ation of coincident rhythmic activity, induction of properties
of plasticity such as long-term potentiation (LTP), but also
growth of new protrusions and remodeling of synaptic
networks [1–5]. The precise functional contribution of this
structural remodeling to network properties remains unclear.
In vitro experiments have demonstrated that LTP induction
results during the next few hours in the growth of new
filopodia and spines [6–9] which then rapidly become
functional [10] and show all characteristics of morphologi-
cally mature synapses over the course of 24 h [11]. Also, work
by several laboratories has shown that under in vivo
conditions, spines and varicosities undergo a continuous
turnover and replacement that vary in intensity as a function
of development [12–16]. This process is further regulated by
sensory activity, because under conditions of deprivation
such as whisker trimming [17] or unbalanced activity such as
chessboard whisker trimming [12,18], spine turnover in-
creases, new spines form synapses and become stabilized,
and others are eliminated. These experiments therefore
clearly demonstrated that stable synaptic contacts can be
removed or created de novo through experience, raising the
possibility that synapse remodeling, together with Hebbian
forms of plasticity, could contribute to information process-
ing and learning [3,19]. It remains unclear, however, whether
and how sensory activity regulates this synaptic remodeling
and whether it could actually affect signal integration by the
neuron and/or the network. Also, the rules and mechanisms
determining which synapse should be removed or restruc-
tured and where new synapses should be created are
unknown. These are important issues because both the
number and localization of spines may greatly affect the
properties of integration of synaptic responses by a neuron.

Recent studies have shown that spatiotemporal clustering of
synaptic currents on small or remote dendrites represents a
critical aspect for the expression of plasticity and the
contribution to neuronal firing [20–22]. Identification of
the mechanisms that underlie spine and synapse remodeling
is therefore critical to a better understanding of the
processing properties of synaptic networks. We investigated
these issues, using a repetitive imaging approach applied to
hippocampal slice cultures, and analyzed how precisely
learning-related activity patterns affected the long-term
behavior of identified spines.

Results

LTP Induction Results in a Lasting Increase in Protrusion
Turnover
Hippocampal slice cultures were transfected to express

enhanced green fluorescent protein (EGFP) using a biolistic
approach; we then monitored the behavior of identified
protrusions (spines and filopodia) over several days following
induction of learning-related activity patterns (Figure 1). For
this, we used two different conditions that trigger LTP, a
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property believed to underlie learning mechanisms: first, we
applied theta burst stimulation (TBS) to Schaffer collaterals,
which triggers robust LTP, and second, we treated slice
cultures for 20–60 min with carbachol (Cch, 10 lM), a
cholinergic agonist, which, in the hippocampus and in slice
cultures, triggers rhythmic activity in the theta and gamma
range and induces a lasting synaptic enhancement (Figure 2C,
inserts) [1,23]. In humans, these theta activities have been
directly implicated in memory processes [24]. Fluorescent
cells and dendritic segments were then imaged repetitively
and the changes in protrusion number and long-term spine
stability monitored (Figure 1A–1C) through analysis of single
z-stack images (Figure 1D and 1E; see criteria in Materials and
Methods). Control experiments with propidium iodide
staining showed that transfection and repetitive confocal
imaging of slice cultures did not alter cell viability over
periods of weeks.

Analysis of protrusion turnover over periods of 3–8 d
showed that the dynamics of synaptic networks is high at this
developmental stage (11 d in vitro) with an average of 20.3%
6 1.1% new protrusions formed per 24 h and 20.8 6 0.9%
disappearing within the same period of time (Figure 2A and
2B). The other protrusions either remained stable without
changes or underwent some sort of morphological trans-
formations (16.2% 6 0.3% [25]). These values are in the
range of those reported in vivo in the cortex of very young
mice [12,14,15].

Following theta burst activity we found that this basal
turnover rate markedly increased. The effect was not short-
lived [7,9], but the increase lasted for several days following a
brief stimulation episode. This lasting increase in turnover
rate was observed both following LTP induction by TBS
(Figure 2C) and by Cch-induced rhythmic activity (10 lM;
Figure 2D). The insert in Figure 2C shows the potentiation of
the slope of evoked excitatory postsynaptic potentials (EPSPs)
recorded in slice cultures following TBS. In Figure 2D, we
illustrate the spontaneous baseline activity of 1–3 Hz
observed under control conditions, the increased 5–10 Hz

field activity recorded in the stratum pyramidale of CA3
during application of 10 lM Cch and the synaptic enhance-
ment observed in the cornus ammonis 1 (CA1) region. The
proportion of new and lost protrusions, which includes
spines and filopodia, increased markedly under both con-
ditions to values of 34% 6 6% and 43% 6 6% of new
protrusions and 33% 6 2% and 44% 6 3% of lost
protrusions over the first 24 h for TBS and Cch, respectively
(see also Figure 3A). These changes reflected a similar
increase in the formation of thin spines and filopodia,
filopodia representing only a very small fraction of the new
protrusions both under control conditions and after stim-
ulation (4.3% 6 0.9%, n¼ 30 cells, control; 4.7% 6 1.4%, n¼
17, LTP and 3.4% 6 1.6%, n ¼ 17, Cch). Together, these
experiments indicate a 70% and 115% increase in protrusion
turnover rate following TBS or Cch treatment, respectively.
To allow comparisons, the data obtained at the different
observation times are expressed in Figure 2C and 2D as
percentage of the basal rate of protrusion formation or loss
observed under control condition. To test for the specificity
of the effect, we then carried out the same experiments, but
applied the N-methyl-D-aspartate (NMDA) receptor antago-
nist D(�)-2-amino-5-phosphonopentanoic acid (D-AP5; 100
lM) during the stimulation protocol or during the applica-
tion of Cch. As shown in Figure 2C and 2D, D-AP5 specifically
prevented the lasting increase in protrusion turnover under
both conditions. As an additional control, we also analyzed
hippocampal slice cultures stimulated in the same way at low
frequency (0.3 Hz), but without induction of rhythmic
activity. These controls showed no significant changes in
turnover rate over time. Finally, we also tested whether this
increase in protrusion turnover was dependent upon protein
synthesis. For this, slice cultures were incubated in the
presence of 25 lM anisomycin (Ani) and stimulated with
either TBS or Cch. Under these conditions, both forms of
potentiation were prevented (ratio of potentiation at 60 min:
1.13 6 0.2, n ¼ 6 and 1.08 6 0.11, n ¼ 3 for TBS and Cch,
respectively) and, as shown in Figure 3A, no significant
increase in the rate of protrusion formation or loss could be
observed over the next 24 h. Note also that Ani treatment of
cultures for 5 h without TBS or Cch stimulation did not affect
the rate of formation and loss of protrusions over 24 h. These
results thus indicated that the changes in protrusion turnover
associated with induction of LTP lasted several days and
included formation and elimination of spines and filopodia.

Increased Protrusion Turnover Promotes the Replacement
of Pre-Existing Spines by New Ones
To assess these results further and test for possible changes

in spine stability and/or occurrence of populations of
transient spines or filopodia, we next analyzed protrusion
growth each day over a period of 5 h, a period during which
most new events can be detected [25]. Following LTP
induction by TBS, the rate of protrusion formation expressed
per 5 h and per 100 lm of dendritic segment increased by a
factor of 2, and this for several days, an effect fully prevented
by D-AP5 applied during the stimulation protocol (Figure 3B
and 3C). We then also assessed spine stability, restricting the
analysis to spines, since filopodia are essentially transient [25]
and mostly disappeared within 24 h. The stability of pre-
existing spines, calculated as the proportion of spines still
present on consecutive days, significantly decreased following
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Author Summary

In the central nervous system, excitatory contacts between neurons
occur mainly on postsynaptic protrusions called dendritic spines. For
decades, these structures have been considered static, and the
adaptive properties of neuronal networks were thought to be only
due to changes in the strength of neuronal connections. But
recently, new imaging techniques used on living neurons revealed
that spines and synapses are dynamic structures that undergo
continuous turnover and can be formed or eliminated as a function
of activity. The functional consequences of this structural remodel-
ing, however, were still unknown. This work shows that application
of learning related paradigms (such as induction of long-term
potentiation or rhythmic activity) to hippocampal neurons allows
them to operate a selection of synaptic inputs that show coincident
activity. This is done through a competitive mechanism that
promotes a selective stabilization of synapses activated by the
learning paradigm and a replacement of non-activated inputs by
new spines. Furthermore these new dendritic spines preferentially
grow in close proximity to activated synapses and become
functional. These findings provide evidence that learning related
paradigms play a major role in shaping the structural organization of
synaptic networks by promoting their specificity.



LTP induction (Figure 4A), a change also dependent upon
NMDA receptor activation. The stability of the new spines
formed within the first 5 h following LTP induction was
however not affected (Figure 4B) and remained particularly
low as under control conditions. Thus, LTP induction
promoted protrusion growth, but also destabilization of
pre-existing spines. Altogether, these different effects ap-
proximately cancelled each other, so that the protrusion
density did not greatly vary; actually, a significant increase
was only observed transiently 2 d following LTP induction
(Figure 4C). A similar situation was observed following Cch
treatment. Protrusion growth increased in association with a
decrease in stability of pre-existing spines and no effect on
the process of new spine stabilization or on protrusion
density (Figure 4D–4F). With both types of experiments,

therefore, the net effect on several days of this increased
turnover was to promote the replacement of existing spines
by new ones.

Differential Stabilization of Activated and Nonactivated
Spines by Rhythmic Activity
We then wondered how this increased spine remodeling

could contribute to the specificity of the synaptic network
and thus investigated whether it affected similarly activated
and naive synapses. For this, we transfected pyramidal
neurons with the red fluorescent dye monomeric red
fluorescent protein (mRFP) [26], to visualize the structural
changes in spine morphology, and costained them 3 d later
with Fluo-4 AM, a calcium indicator, to identify spines
activated by single pulse and TBS stimulation protocols

Figure 1. Illustration of the Experimental Approach

(A) EGFP fluorescent CA1 pyramidal cell (arrow) in an 11 d in vitro organotypic hippocampal slice culture observed 3 d after transfection (scale bar: 100
lm).
(B) Low magnification view of a CA1 pyramidal cell imaged on the first (D1) and fourth day (D4) of observation (scale bar: 50 lm).
(C) 3D reconstructions of a dendritic segment imaged twice at 5-h intervals 24 h after LTP induction (see the axial rotation of the 3D reconstructed segments
in Video S1). Note the appearance of two new protrusions (yellow dots) and disappearance of one (red dot) within this 5-h interval (scale bar: 2 lm).
(D) Example of turnover analyses of z-stacks projections of raw images at observation day 1 (D1) and day 2 (D2). Color dots are placed on protrusions,
one color per protrusion to facilitate their identification. At D2, three new protrusions are identified by a plus sign (þ) and four lost protrusions by a
minus sign (�) (scale bar: 1 lm).
(E) Series of images from the z-stacks shown in (D) but at different z depths to illustrate the possibility to detect protrusions in the three dimensions.
Color dots from (D) andþand� signs are reported on the z plan that is the most relevant for each protrusion (highest brightness). Note that the relative
position of each protrusion along the z-axis is well conserved between observations (scale bar: 1 lm).
doi:10.1371/journal.pbio.0060219.g001
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(Figure 5A–5C, see also Materials and Methods). Figure 5
illustrates the example of a dendritic segment with one spine
that showed a clear increase in calcium fluorescence upon
stimulation, while another one on the same segment
remained silent. In all experiments carried out, we verified
that spines activated by stimulation were always surrounded
by other silent, nonactivated spines in order to exclude global
activation effects. Also, we checked that analyses were done
on spines of similar size (see Figure 6) and that the maximum
calcium signal perfectly coincided with the center of the
spine head. We then assessed the stability of activated and
nonactivated spines for the next 3 d. Overall, with the
stimulation pulses used under these conditions, on average,

36% of all spines tested on analyzed dendritic segments were
found to be activated (n ¼ 349 spines, 18 cells or segments).
TBS was then applied to the same synapses using the same
stimulation pulses in ten cells (62 activated and 130 non-
activated spines analyzed), which resulted in a differential
effect on spine stability: activated spines showed a striking
increase in stability in comparison to nonactivated spines
present on the same dendritic portions (Figure 5D; p , 0.001).
Nonactivated spines actually underwent pruning with regard
to spines in nonstimulated slice cultures (Figure 5E; p , 0.05).
Interestingly, this differential stabilization was prevented by
D-AP5 applied during TBS (Figure 5E). We also verified that

Figure 2. Lasting Increase in Protrusion Turnover Induced by Rhythmic Activity

(A) Dendritic segments imaged on three consecutive days under control conditions (Ctrl, D1–D3) or before (D1) and following LTP induction (LTP, D1–
D3; [þ] new and [�] lost protrusions) (scale bars: 1 lm).
(B) Proportion of stable, new, and lost protrusions (spines and filopodia) per 24 h under control conditions (n¼ 30 cells/1,627 protrusions).
(C) Changes in protrusion turnover measured following LTP induction (TBS, circles; n¼ 17/916), or TBSþ 100 lM D-AP5 (diamonds; n¼ 11/724), or low-
frequency stimulation (0.3 Hz; squares; n ¼ 6/183). Filled and empty symbols represent changes in new and lost protrusions, respectively. Data are
plotted as percentage of control values with the shaded area representing the confidence interval. The insert shows the changes in EPSP slope
measured in the CA1 area before and after LTP induction (filled circles; n¼ 13) and TBS þ 100 lM D-AP5 (open circles; n¼ 7).
(D) Same as in (C) but following theta activity (shown in the insert) induced by treatment with 10 lM Cch (circles, n¼ 11/723). Diamonds: 10 lM Cchþ
100 lM D-AP5 (n ¼ 8/639; ***p , 0.001, 2-way ANOVA with Bonferroni post-tests). The insert illustrates the spontaneous baseline activity of 1–3 Hz
observed in one experiment and the increased 5–10 Hz activity induced by Cch. Below are shown the changes in EPSP slope measured during and after
Cch treatment (n¼ 5).
doi:10.1371/journal.pbio.0060219.g002
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simple activation of spines without TBS did not affect the
long-term stability of spines (Figure 5E, squares).

Spine Activation Coincides with Spine Enlargement and
Stabilization

Although for technical reasons we could not directly assess
LTP in these stimulated spines, we found that most of them
exhibited an enlargement of their head over the next 5 h.
Several previous studies have indeed reported an enlarge-

ment of the spine head as a consequence of LTP induction
[27–29] or used this criteria for identifying potentiated
synapses [30]. In the group of 272 activated and nonactivated
spines analyzed before TBS, there was no difference in mean
head width (Figure 6A). However, when analyzed 5 h after
TBS, most activated spines now exhibited an enlargement of
their head, an effect not observed with nonactivated spines
(Figure 6B). Interestingly, we also found that this differential
enlargement was transient, as most activated spines reversed
their size after 24 h and the differences with nonactivated
spines then became nonsignificant (Figure 6C). Note, in
addition, that the head width of nonactivated spines tended
to become smaller after TBS and that the size of spine heads,
when analyzed individually, showed regular fluctuations over
consecutive days for both activated and nonactivated spines.
A robust effect, however, was the close correlation observed
between activated spines, spines that showed an enlargement
5 h after stimulation, and spines that became stabilized by
activity. When using spine enlargement as a criteria to
analyze spine stability, we found, as for activity, that enlarging
spines exhibited the same differential stabilization (Figure
6D). Thus LTP induction is very likely to promote a long-term
stabilization of potentiated synapses.
To verify whether Cch-induced rhythmic activity also

produced the same selective stabilization process, we then
analyzed how Cch treatment affected spine size. Analysis of
218 spines taken from nine dendritic segments showed that
34% of them exhibited enlargement of their head 5 h after
Cch treatment. We then tested the stability of these spines
over the next 2 d. As shown in Figure 6E, spines that enlarged
as a result of Cch-induced rhythmic activity also became
significantly more stable, while nonenlarging spines tended to
be eliminated, showing the same differential behavior as after
TBS-induced potentiation.

Hot Spots for Spine Growth around Activated Synapses
We then asked how these mechanisms could affect spine

organization and distribution and analyzed whether newly
formed spines could appear at specific hot spots. As shown in
Figure 7A and 7B, we found that, indeed, newly formed spines
tended to appear in close proximity to activated spines. In
Figure 7C, we analyzed the proportion of activated versus
nonactivated spines that had a new protrusion formed within
a distance of 1.5 lm in the next 48 h (defined as hot spot). As
indicated, almost half of activated spines had a new spine
growing close by, something that did not occur with
nonactivated ones. As shown by Figure 7D, we then examined
all newly formed spines and asked how many actually grew
close to an activated or a nonactivated spine. The results show
that, again, about half of newly formed spines grew less than
1.5 lm from an activated spine, while only a small number of
them grew close to a nonactivated spine, the others growing
close to spines that could not be determined. The overall
stability of newly formed spines was, however, not dependent
on their localization (Figure 7E), because new spines
generated close to or far from an activated spines showed
the same probability of being present on subsequent days.

New Spines Formed Consecutively to LTP Induction Are
Functional
We then tested whether these newly formed spines became

functional. For this, TBS was applied to an mRFP-transfected

Figure 3. Increased Activity-Induced Protrusion Formation Is Protein

Synthesis Dependent and D-AP5 Sensitive

(A) Number of new protrusions (spines and filopodia) per 100 lm of
dendritic length detected during the first 5 h and 24 h in control slice
cultures (open columns), following TBS stimulation (black columns) or
TBS applied in the presence of the protein synthesis inhibitor Ani (25 lM;
grey columns; n ¼ 6 cells/351 protrusions), as well as following Cch
treatment (dark grey columns) and Cch together with Ani (light grey
columns; n¼6 cells/307 protrusions). *p , 0.05, **p , 0.01; ***p , 0.001;
two-way ANOVA with Bonferroni post-tests.
(B) The number of new protrusions formed per 5 h and per 100 lm of
dendritic length was measured under control conditions (n ¼ 15 cells),
and at 1, 4, and 7 d after LTP induction (n ¼ 8). **p , 0.01, one-way
ANOVA with Dunnett post-tests.
(C) Rate of protrusion formation measured 1 and 2 d after TBS applied in
the presence of 100 lM D-AP5 (n¼ 7).
doi:10.1371/journal.pbio.0060219.g003

PLoS Biology | www.plosbiology.org September 2008 | Volume 6 | Issue 9 | e2191854

Stabilization and Clustering of Spines after LTP



neuron, and the new spines formed within the next 24 h
monitored by repetitive imaging and their functionality
tested through loading with Fluo-4 AM and stimulation trials
of Schaffer collaterals. Figure 8A shows an example of such a
newly formed spine. Line scan analysis performed 24 h after
TBS shows that this newly formed spine did indeed respond
to stimulation through a calcium signal (Figure 8B and 8C),
indicating that it was functional. Similar results were
obtained in 30 spines out of 47 analyzed (n ¼ 5 cells),
indicating that a majority of them were functional. The mean
DF/F0 ratio (i.e., [fluorescence � basal fluorescence]/basal
fluorescence) at the peak of the calcium signal recorded in
these experiments was 4.3 6 0.8 (n¼ 30). For the other spines,
it remains unclear whether they were silent or whether we
simply could not activate them. We then asked whether the
new functional synapses were also likely to be more stable

than those that did not exhibit any calcium signal in response
to stimulation. Of the 47 newly formed spines analyzed here,
we found that the probability to persist for 48 h was 82% 6

12% for the 30 functional spines (n¼5), but only 30% 6 10%
for the 17 nonactivated spines (Figure 8D), indicating that
activity is a major criteria for long-term stability. Together
these results indicate that LTP induction favored a clustering
of new functional spines around activated spines, promoting
in this way possibilities of spatiotemporal interactions
between them.

Discussion

Together, these experiments provide evidence for an
important new functional role of LTP-inducing activity in
promoting a refinement of synaptic networks. Previous work

Figure 4. Changes in Spine Stability and Protrusion Density Induced by Theta Burst Activity

(A) Stability of pre-existing spines measured as the proportion of initial spines still present 5 h, 1, 2, and 3 d later in control slices (n¼ 20/557), in slices
following LTP induction (n¼ 8/220) and in slices stimulated with TBSþD-AP5 (n¼ 7/301). Filopodia were not considered because they are essentially
transient.
(B) Stability of the new spines formed during an interval of 5 h and still present 2 d later under control conditions, following LTP induction or TBSþD-
AP5.
(C) Changes in protrusion density (spines and filopodia) measured after 2 and 3 d in control slices (open columns), following LTP induction (black
columns) and following TBS þ D-AP5 (grey column).
(D–F) Same as in (A), (B), and (C), respectively, but following Cch treatment (1 h, 10 lM; n¼ 11/328) or Cchþ D-AP5 (n¼ 10/353).
*p , 0.05, ***p , 0.001; two-way ANOVA with Bonferroni post-tests.
doi:10.1371/journal.pbio.0060219.g004
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in hippocampal slice cultures has shown that LTP induction
is associated with two major types of structural remodeling.
First, within minutes, potentiated synapses become larger and
express larger and more complex postsynaptic densities [27–
30], a change possibly associated with receptor expression
and/or spine stabilization [31]. Second, within minutes to
hours, LTP induction also results in the growth of new
filopodia and spines [7,9,32], which then eventually become
functional synapses [8,10,11,25]. These in vitro data are
consistent with other in vivo experiments indicating that
sensory deprivation or unbalanced activity does indeed affect
cortical spine turnover and promote formation of new
synapses [17,18,33]. Here we add three new pieces of
information providing a novel, important function for

structural plasticity: namely, to operate as a selection process
for the long-term stability of synaptic contacts and the
promotion of spatiotemporal interactions between spines.
First, we provide the first (to our knowledge) direct

evidence that spines stimulated with LTP-inducing protocols
are selectively stabilized over periods of several days.
Although LTP could not be directly assessed together with
repetitive imaging, we find that stabilization occurred
specifically at spines stimulated with TBS and not at
nonstimulated spines. Also, stabilized spines did exhibit an
enlargement of the head at 5 h, a characteristic now
demonstrated to be directly associated to LTP by several
recent studies [27–30]. Finally, spine enlargement and spine
stabilization were both D-AP5 sensitive and protein synthesis

Figure 5. Differential Stabilization of Activated and Nonactivated Spines following Rhythmic Activity

(A) Illustration of a dendritic segment with line scan analyses made on an activated (1) and a nonactivated (0) spine.
(B) Line scans showing the mRFP and Fluo-4 channels obtained by analysis of the activated and nonactivated spines (scale bars: 1 lm; 1 s, arrows:
stimulation of Schaffer collaterals).
(C) Fluo-4 signals recorded in (B), expressed as DF/F0.
(D) Differential long-term stability of activated (filled circles) and nonactivated spines (open circles) following LTP induction (n¼ 10 cells/62 activated
and 130 nonactivated spines).
(E) Same as in (D) but with TBSþ 100 lM D-AP5 (n ¼ 4 cells/36 activated [filled circles] and 44 nonactivated spines [open circles]).
***p , 0.001; two-way ANOVA with Bonferroni post-tests.
doi:10.1371/journal.pbio.0060219.g005
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dependent. It seems therefore likely that the stabilization of
stimulated synapses revealed here represents a central
mechanism for the persistence of potentiated synapses.

The second new feature uncovered by these experiments is
that LTP is not only associated with a short-term increase in
protrusion growth, but a lasting, enhanced turnover that
affects pre-existing spine stability, probably through com-
petition mechanisms. Consistent with previous data [7,9],
protrusion growth initially tended to predominate over spine
loss, leading to a transient increase in spine or protrusion
density. However, all together, LTP mainly affected turnover,
resulting not only in protrusion growth, but also in an
increased loss and destabilization of spines, which, impor-
tantly, specifically affected nonstimulated spines. The net
effect of LTP over several days was therefore to promote the
replacement of nonactivated spines by new ones. This
selective destabilization of nonactivated spines was quantita-
tively significant, because in these experiments more than
10% of the spines of the neurons were actually replaced.

Accordingly, regular occurrence of activity susceptible to
induce LTP works as a selection mechanism leading to a
progressive stabilization of inputs showing coincident activ-
ity, increasing in this way the coherence of the synaptic
information provided to the neuron and reducing back-
ground noise.
The last important finding of these experiments is that

newly formed protrusions do not appear just anywhere, but
tend to cluster around activated spines. These new spines also
become functional, and when functional, tend to remain
stable. Together with the evidence that LTP induction is
facilitated between spines located close to each other [30],
this result indicates that LTP will actually promote the
creation of hot spots of functional synapses. This provides
therefore a means to promote spatiotemporal clustering of
synaptic signals, a property recently shown to be critical for
determining the characteristics of plasticity and processing at
synapses on small or remote dendrites [20–22].
At the molecular level, an interesting implication of these

Figure 6. Differential Enlargement and Stability of Activated and Nonactivated Spines after Induction of Rhythmic Activity

(A) Box plot distributions (min to max) of the head width of activated (Act; n¼ 98) and nonactivated spines (N-Act; n¼ 174) measured before TBS.
(B) Proportion of activated and nonactivated spines that exhibited an enlargement 5 h after TBS (n¼ 4 cells/16 activated and 63 nonactivated spines).
Spines were defined as enlarging if their head diameter increased by more than 0.1 lm in 5 h.
(C) Changes in spine width of activated and nonactivated spines and expressed as percent of initial values (n¼4 cells/16 activated and 63 nonactivated
spines).
(D) Differential stability of spines that enlarged (filled circles) or did not enlarge (open circles) 5 h after LTP induction (n¼ 11 cells, 75 enlarging and 179
nonenlarging spines).
(E) Differential stability of spines that enlarged (filled circles) or did not enlarge (open circles) 5 h after carbachol treatment (n¼ 4 cells/21 enlarging and
58 nonenlarging spines).
*p , 0.05, **p , 0.01, ***p , 0.001; Mann-Whitney U-test (B), two-way ANOVA with Bonferroni post-tests (C, D, and E).
doi:10.1371/journal.pbio.0060219.g006
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results is that LTP mechanisms are likely to involve specific
changes that could directly affect spine stability. Spine
enlargement has been previously proposed to reflect this
process [31] and, consistent with this idea, we indeed found
that activated spines did enlarge 5 h after stimulation.
Curiously, however, this effect did not seem to remain stable
over 24 h, and analyses of spine head width suggest that most
spines regularly exhibit significant variations of their size [30].
It could be, therefore, that stability is not only reflected in the
size of the spine, but is linked to the expression of specific
molecules. The current evidence indicating a contribution of
protein synthesis to the long-term changes in synaptic
strength and to the regulation of spine turnover as reported
here could actually suggest such a mechanism [34]. In order to
become stable, activated spines would need to accumulate the
machinery required for protein synthesis [35] and/or express
specific molecules conferring stability to the synaptic contact.

Taken together, the mechanisms reported here provide a
new framework for understanding how the specificity of
cortical networks may progressively develop. These results
might be particularly important during critical periods when
refinement of connections represents a major process shaped
by rhythmic activity and dynamic regulations between

excitatory and inhibitory transmission [36]. This network
plasticity might, however, also contribute in the adult and
provide the functional rules underlying the spine dynamics
described in association with sensory activity [18] or following
brain damage [37]. Together the synaptic mechanisms
described here certainly point to the important role played
by structural plasticity in association to Hebbian changes in
synaptic strength for the refinement and specificity of
cortical networks.

Materials and Methods

Slice cultures and transfection. Transverse hippocampal organo-
typic slice cultures (400 lm thick) from 6- to 7-d-old rats were
prepared as described [38] using a protocol approved by the Geneva
Veterinarian Office (authorization 31.1.1007/3129/0) and maintained
for 11–18 d in a CO2 incubator at 33 8C. Transfection was done either
with a pc-DNA3.1-EGFP or a pCX-mRFP1 [39] plasmid using a
biolistic method (Helios Gene Gun, Bio-Rad) 2–3 d before the first
observation. Fluorescence usually started to be expressed after 24–48
h and then remained stable for at least 15 d.

Electrophysiology. For electrophysiological recordings, slice cul-
tures were maintained at 32 8C in an interface chamber under
continuous perfusion as described [40]. EPSPs were evoked by
stimulation of a group of Schaffer collaterals and recorded in the
stratum radiatum of the CA1 region with pipettes filled with medium.
Potentiation was analyzed by measuring EPSP slopes expressed as
percent of baseline values using an acquisition program written with
Labview. LTP was induced by TBS (five trains at 5 Hz composed each
of four pulses at 100 Hz, repeated twice at 10-s intervals). As controls,
we used slice cultures stimulated at low frequency (0.3 Hz) and
recorded in the same manner as well as slice cultures stimulated with
TBS but in the presence of 100 lM D-AP5. In these experiments, D-
AP5 was only applied for 30 min during application of TBS. Cch

Figure 7. Clustering of Newly Formed Spines around Activated Synapses

(A) Illustration of a dendritic segment with two spines (line scans, 1) that
responded with a calcium signal to the stimulation and another spine (0)
that did not.
(B) Same segment imaged 24 h later showing the formation of two new
protrusions (þ) in close proximity (, 1.5 lm) of the activated spines
(scale bar: 1.5 lm).
(C) Proportion of activated and nonactivated spines that exhibited a new
protrusion formed at , 1.5 lm (hot spot) within the next 48 h after TBS
in seven experiments.
(D) Proportion of new spines formed during the 48 h that followed TBS
and appeared close to (, 1.5 lm) a nonactivated or an activated spine.
(E) Stability of new protrusions measured as the proportion of
protrusions formed within 5 h after TBS in close proximity to an
activated or nonactivated spine and still present 48 h later.
*p , 0.05; **p , 0.01, two-tailed unpaired t-test.
doi:10.1371/journal.pbio.0060219.g007

Figure 8. Functional Properties of Newly Formed Spines

(A) Newly formed spine detected 24 h after application of TBS (line scan;
scale bar: 1.5 lm) and still present 48 h later (arrowhead).
(B) Line scan showing, superimposed, the mRFP and Fluo-4 channels
obtained by analysis of the new spine illustrated in (A) and activated by
electrical stimulation (arrow) 24 h after TBS (scale bars: 1 lm; 1 s).
(C) Fluo-4 signal recorded in (B) following electrical stimulation (arrow-
head) and expressed as DF/F0.
(D) Stability of newly formed spines that responded by a calcium signal
upon stimulation (functional, black column) or failed to respond (failure,
grey column) and measured over 48 h later (n¼ 5 cells; *p , 0.05, Mann-
Whitney U-test).
doi:10.1371/journal.pbio.0060219.g008
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treatment was applied for 20–60 min at a concentration of 10 lM
with or without concomitant application of D-AP5. The protein
synthesis inhibitor was Ani applied 1 h before TBS or Cch treatment
at a concentration of 25 lM and then maintained for 3 h.

Confocal imaging. Short imaging sessions (10–15 min) of trans-
fected slices were carried out with an Olympus Fluoview 300 system
coupled to a single (Olympus) and a two-photon laser (Chameleon;
Coherent) as described [25]. Laser intensity in all these experiments
was kept at the minimum and acquisition conditions maintained
mostly unchanged over the different days of observation. Control
experiments showed that transfection and repetitive confocal imaging
of slice cultures did not alter cell viability over periods of weeks.

We focused on dendritic segments of about 35 lm in length and
located between 100 and 300 lm from the soma on secondary or
tertiary dendrites using a 403 objective and a 103 additional zoom
(final resolution: 25 pixels per micron; steps between scans: 0.4 lm;
Figure 1). We did not find differences in protrusion turnover within
the limits of these dendritic locations. For calcium imaging of spine
activity, transfected cells were additionally loaded with the cell-
permeable calcium indicator Fluo-4 AM (F-14201, Invitrogen). For
this, 50 lg of Fluo-4 AM was dissolved in 10 ll Pluronic (F-127,
Invitrogen) and then diluted in 90 ll of standard pipette solution (150
mM NaCl, 2.5 mM KCl, 10 mM Hepes) for a final dye concentration of
500 lM. A standard patch pipette was then filled with 10 ll of dye
solution and placed at a distance of about 10 lm from the soma of a
mRFP1-expressing CA1 pyramidal cell. Dye was ejected by short
pulses of pressured air at a frequency of three per minute during one-
half hour. Calcium transients in 10–26 identified spines per dendritic
segment were then recorded using line scans through the spine heads
obtained during application of stimulation pulses to Schaffer
collaterals. These pulses were of identical intensity and duration to
those used for subsequent induction of LTP. Confocal aperture was
set to the minimum during line scans, and matching with the mRFP
fluorescence in the red channel was systematically checked. For each
spine tested, calcium transients evoked by two or three consecutive
stimulation pulses were recorded, and spines were determined as
activated whenever the fluorescence signal increased by more than
20% over background in any of the recordings. In average, 36% of all
spines tested corresponded to these criteria with the stimulation
pulses used. To avoid biases, we then also verified that the size
distribution of the spine heads did not differ between spines
classified as activated and nonactivated (0.56 6 0.02 lm versus 0.58
6 0.02 lm, respectively; Figure 6A).

Image analysis. In this study we refer to protrusions, whenever
analyses were carried out by considering filopodia and spines.
Filopodia were defined as protrusions devoid of enlargement at the
tip, while we classified as spines all protrusions exhibiting an
enlargement at the tip. All turnover and stability analyses were
carried out on single z-stacks of raw images (Figures 1E and S1) using
a plug-in specifically developed for OsiriX software (http://www.
osirix-viewer.com). The measures of turnover were carried out by
analyzing all protrusions, i.e., filopodia and spines. We counted as
new protrusions all new structures (spines or filopodia) appearing
between two observations (5 or 24 h) and characterized by a length of
.0.4 lm. All filopodia were counted as separate protrusions. We also
counted spines located behind each other on z-stacks whenever
distinction was possible (Figures 1E and S1). For disappearances, we
counted all protrusions (spines and filopodia) that could no longer be
identified on the next observation. Dubious situations due to possible
changes in protrusion shape, size, or orientiation were discarded, but
overall accounted for only a small number of cases (less than 1%). To
further ensure reliability of analyses, all measurements of spine

turnover and stability were carried out blind by two experimenters.
Comparisons of the analyses made in this way showed variations in
the results that were less than 3%. Furthermore, we used high
numbers of n for both cells and spines, and labeled all new or lost
protrusions directly on the raw data (Figure 1E) to allow multiple
checks.

Due to the lack of survival of filopodia on several days, stability
analyses carried on 48 or 72 h periods only included pre-existing
spines, i.e., spines present at the beginning of the experiment. For
analyses of spine width, we measured the maximum diameter of the
spine head on individual z-images, setting the fluorescence level on
the levels obtained in the dendrite. Situations that did not allow a
precise spine head width measurement (two spine heads overlapping
each other on the same z sections) were excluded. Calcium
fluorescence intensities were acquired and analyzed with Fluoview
software (FV300, Olympus). Note that for illustration purposes,
images presented in the figures are maximum intensity projections of
z stacks, further treated with a Gaussian blur filter. All statistics are
given with the standard error of the mean. Normality was tested for
each distribution (D’Agostino and Pearson test), and a was set to 5%
for all tests.

Supporting Information

Figure S1. Z-Stack Details from the Dendrite Illustrated in Figure 2A

(A) Z-stacks projections of raw images obtained before (D1), 24 h
(LTP-D2) and 48 h (LTP-D3) after LTP induction. Color dots or
triangles are placed on protrusions, one color per spine, to facilitate
protrusion identification. On day 2 (LTP-D2), three new protrusions
are identified by a plus sign (þ) and a color triangle; three lost
protrusions by a minus sign (�). On day 3 (LTP-D3), two new
protrusions are identified by a plus sign (þ) and one lost protrusion
by a minus sign (�).
(B) Series of images from the same stacks as in (A) but at different z
steps to illustrate that scrolling through the z-axis allows a correct
discrimination between protrusions. Color dots, triangles, and plus
and minus signs from (A) are reported on the z level that is the most
relevant for each protrusion (highest brightness) (scale bars: 1 lm).

Found at doi:10.1371/journal.pbio.0060219.sg001 (6.57 MB TIF).

Video S1. 3D Rotating Movie of the Dendritic Segment Illustrated in
Figure 1C

Found at doi:10.1371/journal.pbio.0060219.sv001 (2.38 MB MOV).
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