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Primer

The capacity to undergo self-renewal—to generate 
daughter cells having the same potency and 
regenerative properties as the parent—is what defines 

stem cells. Understanding the molecular mechanisms 
governing this process remains the holy grail of stem cell 
biology and holds great promise for the development of stem 
cell–based therapies aimed at treating debilitating and life-
threatening diseases such as cancer. Interestingly, there is 
support for the idea that several cancers (e.g., blood, brain, 
breast, melanoma) are made of different cell types, but are 
driven and sustained mainly by a rare population of “cancer 
stem cells” that, like normal stem cells, can self-renew and 
also give rise to non–stem cell progeny. This concept predicts 
similarities in the genes that regulate self-renewal of normal 
and cancer stem cells and further emphasizes the importance 
of identifying the key components regulating these events. 
Promising candidate genes include the Polycomb group 
(PcG) family of genes, which play a role in both stem cell self-
renewal and in cancer. Although these genes were discovered 
more than 20 years ago, their function is only slowly being 
uncovered.

The Polycomb group genes were initially identified 
as regulators of homeotic genes, master developmental 
regulators that participate in defining the blueprint for 
Drosophila’s body plan. The identification of similar PcG genes 
and numerous paralogs in vertebrates raised the intriguing 
possibility that they may perform similar functions in these 
organisms (see Table 1 for a full list). In vertebrates, PcG 
proteins assemble into two discrete chromatin-associated 
complexes, which have been recently characterized [1–3]. 
The first complex, referred to as Polycomb Repressive 
Complex 1 (PRC1), includes at least one paralog of the 
Pcgf, Ring1, Phc, and Cbx components, whereas the second 
complex, named PRC2, includes Eed, Ezh, and Suz12, among 
other proteins. Interestingly, proteins within PRC2 are 
interdependent, since reduction in any one of them limits the 
formation of the complex itself [4–6]. PcG protein complexes 
are mostly associated with heterochromatin, where they 
maintain gene expression in the off state through histone 
modifications. The PRC2 proteins Eed, Ezh, and Suz12 form 
the minimal subunit with enzymatic activity toward histone 
H3 (methyltransferase activity on lysine 27 of H3 results in 
H3K27me3) [7,8]. The PRC1 proteins Ring1A/B and Bmi1 
show enzymatic activity toward histone H2A (monoubiquityl-
ligase on lysine 119 of H2A results in uH2AK119) [9]. These 
two histone modifications may be coordinated as proposed 
by the current two-step process model for PcG-mediated 
repression. In this model, the H3K27me3 covalent mark 
catalyzed by PRC2 initiates repression and serves as a docking 

site for the recruitment of the PRC1 complex, resulting 
in uH2AK119. This covalent modification likely prevents 
full access to other chromatin remodeling factors or the 
transcription machinery and facilitates chromatin compaction 
(see Figure 1) [10–13]. 

In mice, loss of function of all core PRC2 components 
studied to date is embryonic lethal due to severe defects at the 
implantation and early post-implantation stages (see Table 
1). Recently, it was found that embryonic stem (ES) cells 
mutant for PRC2 genes lose the ability to maintain themselves 
in an undifferentiated state [14,15]. With the exception of 
mice mutant for Ring1b, which is essential for the survival 
of early embryos, homozygous null mutant mice for other 
PRC1 genes (i.e., Bmi1, Mel18, Cbx2, or Phc1) survive to birth, 
but all display homeotic transformations and die perinatally 
(see Table 1). Functional redundancy and compensation by 
paralogous genes may explain the milder phenotypes found 
with most PRC1 versus PRC2 homozygous null mutant mice. 

Both PRC1 and PRC2 genes are implicated in regulation of 
stem cell self-renewal and in cancer development (reviewed 
in Sparmann et al. [10] and Rajasekhar et al. [16]). Bmi1 was 
first discovered as an oncogene overexpressed in lymphomas 
and cooperating with c-Myc [17]. It was found to regulate 
proliferation and senescence mainly through repression of 
the Ink4a locus [18]. In addition, Bmi1 is overexpressed in 
human leukemias and different types of solid cancers [10,16]. 
This gene also represents an essential regulator of self-renewal 
for both normal and leukemic hematopoietic stem cells 
(HSCs), since both of these cell types eventually disappear in 
its absence [19]. Similar phenotypes were observed with the 
loss of function of Phc1, another PRC1 gene [20]. 

The PRC2 genes EZH2 and SUZ12 are also overexpressed 
in a broad spectrum of human cancers [10,16]. Notably, 
EZH2 is known as a marker for “aggressiveness” in prostate 
and breast cancer [21,22]. Moreover, recent studies indicate 
that overexpression of the Ezh2 protein in mouse HSCs 
preserves self-renewal activity in serial passages, a condition 
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never observed in unmanipulated HSCs and sometimes 
referred to as “HSC senescence” [23]. This type of activity 
may be exploited by tumor cells that overexpress these genes. 
Although activity of Ezh2 and Ezh1 homozygous null HSCs 
remains undescribed, the data with Ezh2 overexpression are 
reminiscent of those recently observed with Bmi1, potentially 
indicating that similar molecular bases (e.g., H3K27 tri-
methylation; H2A mono-ubiquitination) underlie PRC1 and 
PRC2 function in HSCs. However, contrasting with Ezh2 
overexpression, partial loss of function and hypomorphic 
alleles of its PRC2 partner, Eed, restricts the proliferation 
of lymphoid and myeloid progenitors and antagonizes 
PRC1 function [24]. Two independent studies have also 
demonstrated that Eed possesses tumor-suppressive activity in 
the hematopoietic system [25,26]. Therefore, it seems that 
adequate PcG protein levels and activity are important and 
greatly affect the ability of cells to excessively self-renew (the 
result of high PcG levels) or to become transformed (the 
result of low levels).

In this issue of PLoS Biology, a study by Ian J. Majewski et 
al. [27] further strengthens the notion that PRC2 restricts 
cellular proliferation. In their study, the authors provide 
evidence that Suz12 is sensitive to gene dosage in the 

hematopoietic compartment and that reduction in Suz12 
levels enhances the activity of certain hematopoietic cells. 
By using ENU (N-ethyl-N-nitrosourea) mutagenesis and 
positional cloning experiments, Majewski et al. [27] identified 
an inactivating point mutation in Suz12, called Plt8, which is 
embryonic lethal in the homozygous state. More importantly, 
the study showed that heterozygote Suz12Plt8/+ mice are viable 
and display increased numbers of platelets, megakaryocytes, 
lymphoid cells, and certain progenitors. Interestingly, the 
Plt8 mutation partly rescues the hematopoietic phenotype 
observed in mice lacking the thrombopoietin receptor c-Mpl. 
Moreover, the authors show that Suz12Plt8/+ bone marrow cells 
are more competitive than wild-type counterparts, suggesting 
a negative regulatory role for Suz12 in HSC activity. The 
phenotype described in Suz12Plt8/+ mice was reproduced 
by partial knockdown of Suz12 using RNA interference, 
confirming that the mutant phenotype is a result of decreased 
Suz12 expression. The authors also showed that Ezh2 levels 
are reduced in Suz12Plt8/+ cells and that heterozygotic mutation 
of Ezh2 rescues defects seen in c-Mpl-/- mice similarly to 
Suz12Plt8/+ mutants. Although further experiments are needed, 
this suggests that Ezh2 is also haploinsufficient and that low 
levels enhance hematopoietic activity. 

Table 1. Mouse PcG Knockout Phenotype

Complex Mouse Gene Alias Drosophila Protein Domain Knockout Mouse Phenotype

PRC2 complex Eed Esc, Escl WD40 Early embryonic lethal

Ezh1 E(z) SET NA

Ezh2 E(z) SET Early embryonic lethal

Suz12 Su(z)12 Znf C2H2 Early embryonic lethal

Phf1 Pcl1 TUDOR NA

Mtf2 Pcl2 Pcl TUDOR Viable, retarded growth, posterior transformations

Phf19 Pcl3 TUDOR NA

Epc1 E(Pc) E_PC_C NA

Epc2 E(Pc) E_PC_C NA

PRC1 complex Pcgf1 Nspc1 Psc RING NA

Pcgf2 Mel18 Psc RING 3–6 weeks perinatal lethality

Pcgf3 Psc RING NA

Pcgf4 Bmi1 Psc RING 4–6 weeks perinatal lethality

Pcgf5 Psc RING NA

Pcgf6 Mblr Psc RING NA

Ring1 Ring1a dRing RING Normal and fertile, anterior transformations

Rnf2 Ring1b dRing RING Early embryonic lethal

Cbx2 M33 CHROMO 5–6 weeks perinatal lethality

Cbx4 Pc2 CHROMO NA

Cbx6 Pc CHROMO NA

Cbx7 CHROMO NA

Cbx8 Pc3 CHROMO NA

Phc1 Rae28 SAM Perinatal lethality

Phc2 Mph2 Ph SAM Normal and fertile, posterior transformations

Phc3 Hph3 SAM NA

L3mbtl1 dSfmbt MBT repeat NA

L3mbtl2 dSfmbt MBT repeat NA

L3mbtl3 dSfmbt MBT repeat Late embryonic lethal

L3mbtl4 dSfmbt MBT repeat NA

Sfmbt1 dSfmbt MBT repeat NA

Sfmbt2 dSfmbt MBT repeat NA

Scmh1 Scml1 MBT repeat NA

Scml2 Scm MBT repeat NA

Scml4 MBT repeat NA

Asxl1 Znf PHD NA

Asxl2 Asx Znf PHD NA

Asxl3   Znf PHD NA

NA, not available.
doi:10.1371/journal.pbio.0060113.t001
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The study by Majewski et al. [27] is clearly reminiscent of 
the results seen in partial loss of function of Eed. It indicates 
that complete loss of PRC2 components is detrimental to cells 
and produces unviable embryos, but that partial reduction 
in their levels has the opposite effect and enhances HSC and 
progenitor cell activity. In the case of Eednull/+ and homozygous 
hypomorph mutants, this reduction eventually leads to 
leukemia development [24–26]. Although the authors did 
not observe any leukemia in Suz12Plt8/+ mice, oncogenic 
insults and additional mutagenic events may be required for 
full transformation of Suz12Plt8/+ cells. This hypothesis could 
also be true for Ezh2 and should be tested. Interestingly, 
the human chromosomal locations of EED, EZH2, and 
SUZ12 are all found in regions of recurrent chromosomal 
deletions and aberrations. EED is particularly interesting 
because it is located in close proximity to ATM and MLL, two 
genes frequently involved in hematopoietic malignancies. 
Irradiation or carcinogen treatment of Suz12Plt8/+ or Ezh2+/- 
cells may thus reveal a similar tumor-suppressive function as 
observed with Eed mutant mice. 

Together with the current knowledge on Polycomb group 
genes and their role in self-renewal and cancer, the study by 
Majewski et al. [27] provides further evidence for a delicate 
balance and tight regulation of the PRC2 complex levels for 
proper function of stem and progenitor cells. This leads to 
a gene dosage model where up-regulation or modest down-
regulation of the PRC2 complex tips the balance toward 
enhanced HSC activity and increased chances of developing 
tumors, whereas complete knockout results in stem cell loss 
(see Figure 2). 

This model raises many questions regarding the function of 
Polycomb group genes in stem cell self-renewal and cancer. 
First, is there a similar dosage effect for PRC1 genes? Human 

PHC1 is located on Chromosome 12p13, a region frequently 
associated with loss of heterozygosity in acute lymphoblastic 
leukemia [28]. Studies on compound Bmi1 and Mel18 mutant 
mice seem to suggest that these genes are sensitive to dosage 
variations [29]. Careful analysis of stem cell activity and 
sensitivity to transformation in heterozygous mice would 
be of great interest. The mechanisms through which PcG 
haploinsufficiency versus overexpression leads to cancer are 
also yet to be defined. Do the results observed occur through 
similar or distinct pathways? This question is especially 
relevant now that we know that PcG proteins interact with 

doi:10.1371/journal.pbio.0060113.g002

Figure 2. Model for Gene Dosage Effect of PcG Genes on Stem Cells 
and Cancer
Adequate PcG gene levels, such as in wild-type cells (+/+), seem to be 
crucial for normal stem cell functions. Either overexpression (+++) or 
partial loss of function (+/–) of PcG genes leads to an increase in tumor 
development. In turn, complete ablation (–/–) is detrimental and leads to 
impairment or loss of stem cells.

doi:10.1371/journal.pbio.0060113.g001

Figure 1. Nucleosome Crystal Structure and Potential Effect of Mono-Ubiquinated H2A on Chromatin Accessibility
(A) Representation of the nucleosome crystal structure at 2.8 Å resolution (Protein Data Bank #1AOI) [31]. The histone octamer (in grey) is complexed 
with 146 base pairs of DNA (red). The histone H3 lysine 27 (blue) located on the N-terminal tail is tri-methylated (H3K27me3) by the PRC2 complex. The 
histone H2A lysine 119 (green), which is mono-ubiquitylated (uH2AK119) by the PRC1 complex, is located near the entry and exit point of DNA on the 
histone octamer.
(B) In accordance with recent studies, the nucleosome structure shows that, because of their location at the entry and exit point of DNA, ubiquitin 
molecules (beige) bound to H2AK119 could maintain genes in a repressed state by limiting the access of the RNA polII to chromatin [11]. Interestingly, 
ubiquitinated H2AK119 is also located at the linker-histone H1 binding region. Studies have shown that uH2AK119 enhances histone H1 interaction 
with the nucleosome [12,13], suggesting that this epigenetic modification is important for maintaining the compacted chromatin structure.
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multiple other proteins and potentially have non-histone 
substrates, suggesting as yet unknown functions for both 
PRC1 and PRC2 complexes. 

Taking into account that most cancers are derived from 
a single cell (clonal), it can be difficult to compare PcG 
gene expression levels in the rare normal cells in which 
transformation occurs to that in the cancer stem cells. 
Tools and knowledge are becoming available to resolve 
this important issue. Likewise, it is still not clear if PRC2 
and/or PRC1 activity is enhanced as a result of PcG gene 
deregulation in these normal or tumor stem cells. Although 
a pattern of PcG-mediated histone modifications was recently 
ascribed to certain stem cells [30], its implication in self-
renewal remains difficult to assess. Such an endeavor would 
require the generation of histone mutants, a technical 
challenge in vertebrates considering the multiple variants and 
genes coding for all four nucleosomal subunits. In addition, 
evidence that PcG proteins also display non-chromatin-
related activity raises a fundamental issue about the targets 
(i.e., nucleosomes versus others) that control self-renewal in 
cancer and normal stem cells. 

Finally, since very little is known about the transcriptional 
and post-transcriptional regulation of PcG genes, it becomes 
important to elucidate the pathways that determine the 
cellular levels of these proteins in order to prevent stem cell 
loss and cancer development. �
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Glossary 
Embryonic lethal: Leading to death of embryos during 
embryonic development.

Haploinsufficiency: When loss of one functional copy in a 
diploid organism results in a phenotype.

Homeotic transformation: Major shift in the developmental 
fate of an organ or body part, especially to a homologous organ 
or part normally found elsewhere in the organism.

Hypomorphic gene: A mutant gene having a similar but weaker 
effect than the corresponding wild-type gene.


