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Modification of a Hydrophobic Layer
by a Point Mutation in Syntaxin 1A
Regulates the Rate of Synaptic Vesicle Fusion
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Gregory T. Macleodmb, R. Bryan Sutton?, Bing Zhang1*
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Both constitutive secretion and Ca®'-regulated exocytosis require the assembly of the soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE
complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a
model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion.
Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain.
Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in
syntaxins ascribed to the constitutive secretory pathway. Flies carrying the 1254 mutant protein have increased levels
of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast,
overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the 1254 mutant background.
These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254
serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas 1254 favors fusion by
enhancing intermolecular interaction within the SNARE core complex.
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Introduction

Soluble N-ethylmaleimide-sensitive factor (NSF) attach-
ment protein receptor (SNARE) proteins are thought to
mediate vesicle fusion in all eukaryotes [1-4]. In nerve
terminals, there are two target-SNAREs (t-SNAREs, also
called Q-SNAREs), syntaxin 1A and synaptosome-associated
protein-25 kDa (SNAP-25) on the plasma membrane, and one
vesicle-associated SNARE (v-SNARE, also called R-SNARE),
synaptobrevin 2 on synaptic vesicles [2]. Prior to exocytosis,
the t- and v-SNAREs are thought to form a trans complex
composed of a four-stranded helical bundle with one helix
each from syntaxin and synaptobrevin and two helices
contributed by SNAP-25 [5-9] (Figure 1A). As vesicles
undergo fusion, the SNARE complex rearranges from a trans
to a cis configuration such that all the SNARE proteins are
localized to one membrane. The c¢is complex is then thought
to be rapidly disrupted by the ATPase NSF [5,10-12], allowing
the v-SNARE to be recycled into synaptic vesicles [13].
Although the specific mechanism of vesicle fusion is still in
debate, it is now widely accepted that the formation of this
four-helix bundle is essential for the fusion of the vesicle
phospholipid bilayer with the plasma membrane phospholi-
pid bilayer [3].

Vesicle fusion can be constitutive or triggered by calcium
ion (Ca®") [14]. In the latter case, the putative Ca?" sensor
synaptotagmin I plays a critical role [2,3]. Constitutive vesicle
fusion differs from regulated secretion in that it is relatively
less dependent on intracellular Ca®'. This has been demon-
strated in reconstituted secretory cells [15] and at synapses,
including mammalian [16,17] and invertebrate nerve termi-
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nals [18]. In these preparations, removal of extracellular Ca®"
or reduction of intraterminal [Ca®"] by Ca®" chelators does
not stop spontaneous vesicle fusion. At the Drosophila larval
neuromuscular junction (NM]), Ca®"-free saline containing
ethylene glycol tetraacetic acid (EGTA) does not alter the rate
of spontaneous release [19]. These observations collectively
suggest that spontaneous vesicle fusion can occur even when
intracellular [Ca®'] is reduced. This implies that a mechanism
exists to overcome the energy barrier for vesicle fusion at
low-Ca®" conditions. Because SNARE complexes also mediate
vesicle fusion along the constitutive secretory pathway [1,20],
it is conceivable that this mechanism lies within the different
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Author Summary

Most living cells constantly renew their membrane compositions
and frequently communicate with neighboring cells by delivering
cargo molecules from small vesicles. A key step in cargo delivery
requires the fusion of the vesicle membrane with the target
membrane mediated by SNARE proteins. In most cellular compart-
ments, fusion occurs constitutively, requiring little participation of
other molecules. In other cellular compartments, such as synapses in
the nervous system, vesicle fusion is predominantly triggered by
intracellular calcium ions. At present, constitutive and regulated
fusion modes are not well understood.

In this study, we found that a mutant SNARE protein, syntaxin at
the synapse, contained a building block commonly conserved for
syntaxins functioning along constitutive secretory pathways. Fur-
ther, our modeling predicted that the mutant syntaxin could form a
tightly packed SNARE bundle closely resembling that found in the
endosome, but differing from the relatively loosely packed bundle
found at the wild-type synapse. Our experimental data support the
hypothesis that the mutant syntaxin lowered the energy barrier for
vesicle fusion by tightening the SNARE bundle. These findings reveal
a novel, intrinsic structural feature of the SNARE complex that
regulates vesicle fusion rate at different cellular compartments.

structural and/or biochemical properties of SNARE com-
plexes used for constitutive secretion and Ca®'-regulated
exocytosis.

The synapse offers an ideal site to test this hypothesis
because both forms of secretion co-exist and the SNARE
proteins involved in the process are well studied. Further-
more, vesicle fusion can be readily detected at single-vesicle
levels using electrophysiology [14]. In this study, we focused
on a point mutation, T254I in syntaxin 1A, located at the +7
layer of the SNARE core complex [6], and its role in SNARE
complex assembly and synaptic transmission in Drosophila. In
an earlier study [21], it was demonstrated that this mutation
(syx°~%%) completely abolished the assembly of the SNARE
complex at the restrictive temperature. Consequently, syn-
aptic transmission was fully blocked and the fly paralyzed.
Along with previous genetic deletion or mutation studies [22-
24], these results provided important in vivo evidence that
SNARE complex assembly was essential for synaptic vesicle
fusion. However, our re-investigation of the syx%ﬁg mutant
shows that the T254I mutation blocks neither the assembly of
the SNARE complex nor synaptic transmission at the
restrictive temperature. Instead, we find that the T254I
mutation promotes the formation of the SNARE complex as
well as vesicle fusion at permissive temperatures. These
findings are consistent with a molecular model of the SNARE
complex, suggesting that the T2541 mutation causes a
structural change of the +7 layer so that the mutant layer
more closely resembles those found along constitutive
secretory pathways. By enhancing the hydrophobic core of
the molecule in the vicinity of layer +7, towards the C-
terminal transmembrane helix, the mutant SNARE complex
favors “constitutive-like” vesicle secretion either by increas-
ing intermolecular interactions among the SNARE bundles or
by stimulating vesicle docking and/or priming. These results
suggest an evolutionarily conserved mechanism intrinsic to
the structure of SNARE complexes that could act as a
molecular switch to regulate the rate of vesicle fusion.
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Results

The syx>®° Mutation Does Not Block Synaptic
Transmission or SNARE Complex Assembly at Restrictive
Temperatures

Syntaxin 1A is a critical component of the SNARE complex
and is thought to be essential for synaptic vesicle fusion [1-
3,24]. A previous study showed that mutation of threonine (T)
to isoleucine (I) at position 254 in the Drosophila syntaxin 1A
was sufficient to abolish the assembly of SNARE complexes at
restrictive temperatures [21]. However, this conclusion is
questionable if we take into consideration the conservation
and divergence of residues at this position among different
syntaxins. Our sequence analysis shows that, with the
exception of syntaxin 4, most syntaxins found at the plasma
membrane have a highly conserved T254 residue at the +7
layer (Figure 1B). Notably, the T254-containing syntaxins,
such as syntaxin 1, 2, and 3, are typically used for regulated
vesicle fusion at either synapses or neurosecretory cells in a
diverse range of animal species [25-27]. In contrast, syntaxins
involved in most constitutive secretion pathways in both
animals and plants have one of the following amino acids at
their equivalent positions: isoleucine, leucine (L), or valine (V)
(Figure 1B; see also Figure S1). Valine, leucine, and isoleucine
are similar in that they are hydrophobic, branch-chained
amino acids. Therefore, this substitution of the residue at
position 254 among syntaxins in the constitutive pathways is
highly conserved throughout evolution. There are a few
exceptions to this generalization. The yeast plasma mem-
brane syntaxin orthologs have a threonine at the equivalent
position (Figures 1B and S1). Furthermore, T254-containing
syntaxins could also function in non-synaptic secretions, such
as syntaxin 2 in postsynaptic membrane trafficking [26] and
Drosophila syntaxin 1A in cuticle secretion [23,28]. Nonethe-
less, the overall feature emerging from our analysis is that
syntaxins with conserved isoleucine at the +7 layer appear to
be selectively involved in regulated secretion at synapses or
neurosecretory cells.

It is particularly interesting to note that the T254I
mutation found in the sy’ °’ mutant approximates a
reversion to a residue of wild-type syntaxins found in the
constitutive secretory pathway. Notably, syntaxin 5 isoforms
place an isoleucine at the site equivalent to position 254.
Syntaxin 5 clearly functions in mammal cis Golgi networks at
normal body temperature, similar to the temperature at
which the syx’~*’ mutant is reported to lose the ability to form
SNARE complexes [21]. This prompted us to reconsider
whether the T2541 mutant syntaxin 1A indeed ceases to
function at restrictive temperatures. To this end, we
thoroughly re-examined the behavior, synaptic transmission,
and SNARE complex formation of the syx’ *° mutant fly at
elevated temperatures. Our tests showed that syxjfﬁg mutant
flies were rapidly paralyzed at 38 °C and recovered within 3
min when returned to permissive temperature after a 20-min
period of paralysis (Figure 2A and 2B). The paralysis and
recovery rates were identical to those shown previously [21].
However, different from the previous observations, we noted
that the syx}ég mutant fly was paralyzed, but not motionless:
the flies constantly shook their legs and abdomens during the
period of paralysis at 38 °C (compare Video S1 with Video
S$2). We used a wild-type fly (Canton-S [CS]) and two other
temperature-sensitive paralytic flies, Shibire" (Shi®') and
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Figure 1. Conservation and Divergence of Threonine 254 among Different Syntaxin Orthologs

(A) Proposed model of SNARE complex assembly and disassembly in a synaptic vesicle cycle (adapted from [5]). (1) Synaptobrevin forms a partial trans
SNARE complex with syntaxin 1A and SNAP-25. (2) By zippering in an N- to C-termini direction, the SNARE proteins form a trans complex and bring the
synaptic vesicle close to the plasma membrane. SNARE-mediated synaptic vesicle exocytosis occurs either spontaneously (3) or evoked by Ca®t (4). (5)
cis SNARE complexes are thought to be disassembled by NSF ATPase prior to vesicle recycling. ER, endoplasmic reticulum; PM, plasma membrane; SV,
synaptic vesicle.

(B) Alignment of amino acids (aa) around position T254 in the Drosophila syntaxin 1A or equivalent residues in syntaxin orthologs from a variety of
animals, yeast, and the plant Arabidopsis. The top panel shows a cartoon of syntaxin 1A and the region of the alignment. Syntaxins are organized as
“plasma membrane” or “intracellular compartments” according to their cellular distributions. With the exception of syntaxin 4, most plasma membrane
syntaxins are known to function in presynaptic terminals or neurosecretory cells for Ca®"-regulated exocytosis. Note that T254 is highly conserved
among “presynaptic” syntaxin 1A, 2, and 3A molecules. We call all other syntaxin orthologs shown here “constitutive” syntaxins because they are used
for constitutive secretion on the plasma membrane (PM) and intracellular compartments, such as the endosome and the lysosome, the cis and trans
Golgi network (Golgi network), and endoplasmic reticulum (ER) [1]. The yeast plasma membrane syntaxin orthologs SSO1 and SSO2, and syntaxins 4
and 131 from Arabidopsis are also shown here. (A more complete alignment can be see in Figure S1.) Unlike the synaptic syntaxins, syntaxin 4 and most
syntaxin 11s have a valine (V) at the 254 equivalent position, syntaxins 6, 7, 12, 16, and 17 a leucine (L), and syntaxin 5 an isoleucine (I). The isoleucine
found in the syx>%° mutant resembles some of the wild-type syntaxin orthologs used for constitutive secretion. The core complex layers from 0 to +8
are identified at the bottom. The aa sequence was obtained from the NIH's National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.

nih.gov) and aligned using the software DNAStar.
doi:10.1371/journal.pbio.0050072.g001
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paralytic®’ (para”’) as controls. As expected, Shi !

and para®
flies were completely paralyzed due either to a block of
synaptic vesicle recycling [29] or a failure of action potential
propagation [30], respectively, and did not exhibit the
shaking seen in the syx’sf(jg mutant. Upon returning to room
temperature, Shi"’, para”’, and syx3_69 flies all resumed their
normal activities (Video S3).

These behavioral observations suggest that synaptic trans-
mission persists in syxj%g flies at the restrictive temperature.
To further test this idea, we examined leg movement upon
the activation of the giant fiber pathway in adult flies [31]. We
stimulated the giant fiber neurons located in the head and
observed the movement of fly legs (the body and wings were
anchored with wax on a slide). Repetitive and phase-locked
leg shaking was readily observed in sy” "% flies at both the
permissive temperature (20 °C; unpublished data) and
restrictive temperature (38 °C) following each stimulus of
the giant fiber neurons (see Video S4). In contrast, Shi® flies
moved their legs in response to each stimulus only at the
permissive temperature (20 °C; unpublished data), but not at
the restrictive temperature (Video S5). Figure 2C (rightmost
panels) summarizes the spontaneous and electrical stimula-
tion-evoked leg movement in syx3'69 flies and the lack of such

. 451
movement in Shi®

flies at restrictive temperatures.

The persistence of synaptically evoked leg movements at
the restrictive temperature suggests that synaptic trans-
mission remains intact through multiple synapses (an
electrical synapse and two chemical synapses) along the giant
fiber pathway [31]. To directly measure synaptic transmission,
we next recorded the synaptic response of the dorsal
longitudinal indirect flight muscles (DLMs) from syx’~%° flies
maintained at 38 °C. Our results show that evoked synaptic
transmission and the resulting action potential persisted at 38
°C (n=6; Figure 2D). During the course of these experiments,
we noted that intracellular electrodes were often dislodged
from DLMs only from sy’ % flies, and there was a high
incidence of spontaneous action potentials in the mutant
DLMs (Figure 2D, inset). In contrast, Shi*! flies completely
lost synaptic transmission upon activation of the giant fiber
neuron at restrictive temperatures [32] (unpublished data).
Hence, synaptic transmission is not blocked at restrictive
temperatures in syx’ °° flies. As shown below, it is likely that
paralysis of the syx3769 mutant is caused by excessive or
uncoordinated release of transmitter, rather than a complete
block of exocytosis as suggested previously [21].
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Consistent with the observation that synaptic transmission
persists along the giant fiber pathway, light-induced “on” and
“off” transient potentials of electroretinograms (ERGs) were
not blocked by exposure of the sy’ *° fly to the restrictive
temperature (Figure 3). These transients are thought to
reflect synaptic transmission from photoreceptors to down-
stream interneurons in the retina [33]. The control fly, Shi,
lost its transient potentials at 33 °C, consistent with a
depletion of the vesicle pool [21,29,32] (Figure 3B). However,
the findings from the sy’ % fly differ from those reported
earlier [21], which showed that the restrictive temperature
reversibly blocked these transients. In our experiments, we
carefully monitored the temperature of the sy fly by
placing a temperature probe adjacent to the experimental fly.
Additionally, we mounted another sy’ %’ fly beside the
experimental fly so that we could observe the paralysis
during the exposure at 38 °C and the recovery afterward. In a
total of eight experiments, we never saw a loss of these
transient potentials. In fact, our results showed that the “on”
transient potential was slightly increased in amplitude at 38
°C (see Figure 3C). Additionally, we also observed sponta-
neous and light-induced high-frequency “bursting” activities
typically indicative of enhanced neuronal activity in both the
wild-type and the syx° % flies (see arrowheads in Figure 3A
and 3C; see also [34]). Hyperactivity of the thoracic ganglion
was also observed independently by Dr. Bruno van Swinde-
ren’s laboratory when syxj%g flies were exposed to the
restrictive temperature (B. van Swinderen, personal commu-
nication).

Taken together, both our behavioral tests and electro-
physiological analyses support the notion that synaptic
transmission is not blocked in syx%ﬁg
temperatures. These results further suggest that the forma-
tion of the SNARE complex is not abolished in sy
mutants at the restrictive temperature. To test this hypoth-
esis, we measured the level of SNARE complexes using the
methods described previously [11,21]. We first established the
“linear” range that allows optimal detection of changes in the
sodium dodecyl sulfate (SDS)-resistant SNARE complex
(Figure S2) and then measured the level of SNARE complexes
in syxs%g mutants. Our results showed that the amount of the
7S SNARE complex and high molecular weight SNARE
multimers (or oligomers) remained at wild-type levels in syx%
%’ mutant flies at the restrictive temperature (Figure 4A and
4B). The syx’~°° mutant fly was exposed to 38 °C for 20 min

mutants at restrictive
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Figure 2. Behavioral and Electrophysiological Analyses Reveal That Synaptic Transmission Is Not Blocked in the syx’>**° Mutant Fly at Restrictive
Temperatures

(A and B) Temperature-sensitive paralysis and recovery of the syx>*° mutant fly. (A) shows the still image of both wild type (+/4) and the syx*>"%° mutant
before, during, and after exposure to the restrictive temperature (38 °C). Although the wild-type flies are not paralyzed at 38 °C, the syx>-%° mutant flies
are. However, the syx’® flies recover rapidly to standing position within 2-3 min once returned to the permissive temperature. The quantification of
the recovery kinetics is shown in (B). Error bars in this and all other figures indicate the standard errors.

(C) The paralyzed syx>*° mutant flies remain capable of responding to stimuli via the polysynaptic giant fiber (GF) pathway. The flies are anchored on a
glass slide upside down with modeling clay while a stimulating electrode is inserted into one of the compound eyes (arrows). The syx>~%° fly constantly
shakes its legs, head, and abdomen while paralyzed at 38 °C. In response to electrical stimulation of the giant fiber neuron, the mutant fly extends its
legs phase-locked with each stimulus. However, the Shi®" fly is completely paralyzed and does not respond to the stimuli at the same restrictive
temperature. The right-most panels summarize the cumulative spontaneous and electrical stimulation-evoked movements of legs in syx>~*° flies and
the lack of leg movement in Shi®’ flies. These behavioral observations strongly indicate that exposing the syx*>"% fly to 38 °C does not block synaptic
transmission. See also Videos S4 and S5.

(D) Recordings from indirect flight muscles confirm that synaptic transmission is not blocked in syx>~° flies at the restrictive temperature. Action
potentials in DLMs driven by polysynaptic stimuli along the giant fiber pathway remain the same in the syx°> % mutant fly as in the wild-type control fly
before, during, and after exposure to the restrictive temperature. Synaptic-induced high-frequency action potentials are often observed in both the wild
type and the syx>* mutant (unpublished data). These high-frequency action potentials also occur spontaneously in the mutant. (An example is shown
in the inset box.)

doi:10.1371/journal.pbio.0050072.g002
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Figure 3. ERG Recordings Show That Synaptic Transmission Is Not
Blocked in the syx>*° Mutant Fly at Restrictive Temperatures

(A) ERGs are obtained from the wild-type fly at the permissive
temperature (20 °C), during the restrictive temperature (38 °C), and
during recovery at 20 °C following a brief white-light stimulation of the
compound eye. The spikes before and following the sustained photo-
receptor potential are called “on” and “off” transient potentials (arrows),
respectively. They are thought to reflect synaptic transmission from the
photoreceptor to downstream interneurons. Note that these transient
potentials are not significantly affected at 38 °C. The extracellular
recording electrode also detects light-induced high-frequency action
potentials (arrowheads), which normally result in startle escape.

(B) The “on” and “off” transient potentials are absent in Shit" flies
exposed at 33 °C, consistent with a conditional block of vesicle recycling.
(C) Under the same experimental conditions, the “on” and “off”
transient potentials in the syx>*° mutant fly remain essentially similar to
those observed in the wild-type fly. Even though the amplitude of
photoreceptor potentials is reduced and the duration of recovery is
prolonged, synaptic transmission is not blocked at 38 °C in both the wild-
type and the mutant fly. Additionally, the mutant fly also displays light-
induced high-frequency action potentials (arrowheads), even though it is
paralyzed.

doi:10.1371/journal.pbio.0050072.g003

prior to rapid freezing with liquid nitrogen and extraction of
the SDS-resistant SNARE complex, as described previously
[21]. In 50 separate experiments, we consistently observed the
SNARE complex. This result has also been independently
noted in Dr. Leo Pallanck’s laboratory (L. Pallanck, personal
communication). In a number of experiments, we also
included the comatose (comt) mutant in our Western analysis
and detected a consistent accumulation of the SNARE
complex (Figure 4C), which is thought to be caused by
dysfunction of NSF at restrictive temperatures [10-12]. Taken
together, all our observations show that the T2541 mutation
in syntaxin 1A does not block SNARE complex formation nor
does it block synaptic transmission at restrictive temper-
atures. Because our results differ markedly from those
reported earlier [21], we sought to confirm whether the
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Figure 4. The SNARE Complexes Remain in syx’>"%° Mutant Flies at the
Restrictive Temperature

(A and B) The SDS-resistant complex is not obviously affected in
homozygous syx>%° mutant flies at restrictive temperatures. A repre-
sentative Western blot shows the syntaxin 1A monomer, the 7S SNARE
complex, and the multimeric complex obtained from heads of the wild
type (+/4) and the syx”g mutant (A). A control for total protein loaded is
illustrated by the intensity of tubulin (bottom). Histograms of ratios of
the 7S and multimeric complexes to monomer in wild-type (+/+) and
syx> " mutant flies are shown in (B). Unless specifically noted, the
complex-to-monomer ratio is normalized to that of the wild type at room
temperature in this and other SNARE complex histograms. The SNARE
complex was extracted from flies either at room temperature (~22 °C) or
after exposure to 38 °C for 20 min, as described above [21].

(C) An example of Western blots showing the SNARE complex in the
wild-type (+/4), comatose (comt®?), and syx>*° mutant flies. The SNARE
complex accumulates in the comt®” mutant, likely as a result of a block
of the NSF ATPase activity at the restrictive temperature. Note that even
though relatively less protein was loaded in the syx’%° lanes (as judged
by the intensi'?/ of the syntaxin band), the 7S complex remains in
paralyzed syx>~®” flies.

doi:10.1371/journal.pbio.0050072.g004

mutant fly we studied indeed carried the T2541 mutation as
shown in the snyég mutant. Sequencing confirmed that there
is a single base change from ACC to ATC in the open reading
frame of syntaxin 1A (see Figure S3). Furthermore, we were
able to rescue the paralysis (unpublished data) and electro-
physiological defects by neuronal expression of the wild-type
syntaxin 1A in the syx3_69 mutant background (see below).
These results leave little doubt that the phenotype we study
here is specifically caused by the T2541 mutation in syx’ *’

mutant flies.

Structural Modeling Suggests That the T254] Mutation
Tightens SNARE Complexes

To account for the hyperactivity observed in sy’ % flies, we
next examined whether the T254I mutation in syntaxin 1A
has any effect on SNARE assembly and synaptic function at
permissive temperatures. Upon examination of the available
crystal structures of SNARE core complexes [6], we found that
many of the central layers are tightly packed with hydro-
phobic residues contained within the four helical bundles. An
example of this tight packing in the +1 layer of the synaptic
SNARE core complex is illustrated in Figure 5A and 5B. The
interactions of Leu57 and Ile178 from SNAP-25, 11e230 from
syntaxin 1A, and Leu60 from synaptobrevin form square-
planar geometry typical of the leucine zipper motif. In

April 2007 | Volume 5 | Issue 4 | e72
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Figure 5. Structural Modeling Suggests That the T2541 Mutation in Syntaxin 1A Increases Direct Molecular Interactions within the +7 Layer

(A) The core complex layers of the synaptic SNARE complex (1SFFC), consisting of two a-helical bundles from SNAP-25 (SN1 and SN2) and one bundle
each from syntaxin 1A (Syx) and synaptobrevin (Syb), are shown (adapted from [6]). Although initially obtained as cis complexes with truncated SNAREs
[6], these layers of the core complex are most likely found in pre-fusion trans SNARE complexes.

(B) Crystal structures of +1 and +7 layers of the synaptic core complex (1SFC [6]) show tightly and loosely packed bundles, respectively. Note the void
space within the +7 layer. Our structural modeling shows that the mutation of the hydrophilic threonine at position 251 (which is equivalent to position
254 in Drosophila syntaxin 1A) to a hydrophobic isoleucine results in a relatively tightly packed +7 layer. This may allow direct molecular interactions
between syntaxin 1A with its neighboring bundles from SNAP-25 and synaptobrevin. It is hypothesized that the T2541 mutation in syx> "% stimulates
vesicle fusion by lowering the energy barrier for zippering of the SNARE complex.

(C) Representative +7 layer abstracted from the crystal structure of the endosomal SNARE (1GL2 [20]). Note that this layer is tightly packed and similar to
the T2511 mutant layer. Given the evolutionary conservation of hydrophobic residues at the +7 layer among “constitutive” syntaxin orthologs (Figure
1B), this structural resemblance suggests that the T254] mutant syntaxin 1A may function as a constitutive syntaxin to promote vesicle fusion.
doi:10.1371/journal.pbio.0050072.g005

contrast, the +7 layer containing the wild-type syntaxin 1A is of homologous neuronal SNARE syntaxin proteins implied a
relatively loosely packed due to the presence of a conserved similar loosely packed configuration in this layer [7].
polar threonine residue at position 251 (equivalent to Interestingly, the homologous layer of the endosomal SNARE
position 254 in Drosophila syntaxin 1A) [6,7,21], which packs X-ray structure (1GL2) [20] shows more reliance on hydro-
against more hydrophobic partners. Results of examination phobic, branched-chain amino acids, than the synaptic

@ PLoS Biology | www.plosbiology.org 0806 April 2007 | Volume 5 | Issue 4 | e72



A o B
Multimeric
complex 1.6 @22°C L
9] 5
g E
7S SNARE g 121 Mg
complex - £ E
E 0.8 g
" o
Syntaxin 1A £ E
monomer 'S RS S 0.4 | £
E =
in -
Tubulin 0.0 L
+/+  syx
c Multimeric D _
complex n=4 Synaptobrevin
7S SNARE - - 300
complex §
Tubulin @D D e—— g 200 SNAP-25
Syntaxin 1A SRR ————
[ 4 Syntaxin
SNAP-25 T T e emm— E
SNAP-24 2100
N-Syb — T ——— ] H H
\g&"qo \é?) Qa \ab &°
L IF ++ syx +/+ syx +/+ syx

+H+ syx +/+

Figure 6. The Assembly of SDS-Resistant SNARE Complexes Is Increased
in syx>® Mutant Flies at Permissive Temperatures

(A and B) The amount of SDS-resistant 7S complex as well as the
multimeric complex is significantly increased in homozygous syx* "’
mutant flies at 22 °C. A representative Western blot shows the syntaxin
1A monomer, the 7S SNARE complex, and the multimeric complex
obtained from heads of the wild type (+/4) and the mutant (syx [A]). The
relative level of total proteins loaded in the lanes is illustrated by the
intensity of tubulin. Histograms of ratios of the 7S and multimeric
complexes to monomer in wild-type and syx’~%° mutant flies are shown
in (B). *, p < 0.05.

(C and D) Western blots show the SNARE complexes, tubulin, syntaxin
1A, SNAP-25, and N-Syb from fly-head extract inputs, immunoprecipi-
tates (pellets), and SDS head extracts. The head extracts used for
immunoprecipitation were obtained from the wild-type (+/+) and the
syx° ™% mutant (syx) flies and incubated with Sepharose bead-coupled
SNAP-25 antibodies. Inputs and precipitates were boiled in SDS sample
buffer before loading. One of the SDS head-extract samples was not
boiled to preserve the SDS-resistant SNARE complexes. The Western blot
was sequentially probed with a syntaxin 1A antibody for SNARE
complexes and syntaxin 1A monomers, a different SNAP-25 antibody
for SNAP-25 (which also recognizes SNAP-24), an N-Syb antibody for N-
Syb, and a tubulin antibody for tubulin. Note that tubulin is absent from
pellet and that the SNARE complexes are only present in the unboiled
SDS head extracts. SNAP-24 is present only in the input lanes and the
SDS extracts; it is absent from the pellets because the IP antibody is
specific for SNAP-25. Compared to the wild-type lanes, there are sllghtg/
more N-Syb, syntaxin 1A, and SNAP-25 in the precipitates from the syx® "’
mutant (syx) mutant flies.

doi:10.1371/journal.pbio.0050072.g006

SNARE (Figure 5C). The resulting interaction may contribute
more hydrophobic stability of the zippered endosomal
complex relative to the wild-type synaptic SNARE complex.
We therefore propose that the tightened +7 layer in the
SNARE complex containing the T2541 mutant syntaxin 1A
may mimic the function of the endosomal complex.

Our modeling results do not support the observation that
the T2541 mutation debilitates SNARE complex assembly, as
previously reported [21]. To further verify this, we conducted
molecular dynamics simulations of the SNARE complex in a
water bath at 300 K for 5 ns using GROMACS [35,36]. After
equilibration was achieved, there was no gross difference
between the interactions of wild-type SNARE components
and the mutant SNARE components. Also, the wild-type
SNARE structure shows some degree of “fraying” at the
termini of the complex [6]. Although this fraying effect is
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probably not physiologically relevant, per se, it does illustrate
the looser packing of residues at the periphery of the wild-
type complex. In our simulations, one would expect a
destabilization of the termini (increase in fraying) if this
mutation were indeed unstable; however, none was observed.
Our simulation shows that the T2541 mutation does not
destabilize the complex, nor does it obviously increase the
fraying at the terminus relative to wild-type.

Based on this structural analysis and modeling, we predict
that the T2541 mutation facilitates the formation or stability
of the SNARE complex by enhancing intermolecular hydro-
phobic interactions among the four SNARE o-helices.
Because this layer is near the C-terminal of the SNARE core
complex, a tighter zippering of the SNARE complex may
make fusion more probable by lowering the energy barrier
for fusion and thereby partially abrogate the Ca®"-depend-
ence of exocytosis. The mutant protein could also promote
vesicle fusion by enhancing vesicle docking/priming. In other
words, the T2541 mutation may increase the rate of
spontaneous release, turning the synapse into a constitutive
secretion site. Alternatively, the T2541 mutation could
stabilize the cis SNARE complex such that it impedes vesicle
recycling and ultimately reduces exocytosis upon repetitive
nerve stimulation.

The Assembly of SNARE Complexes Is Enhanced in the
syx° "% Mutant at the Permissive Temperature

To test these structural predictions, we first investigated
the biochemistry of SNARE complex assembly in the syx3 09
mutant at room temperature. Unlike the results obtained at
the restrictive temperature (Figure 4), our measurements
showed that the average amount of the SDS-resistant 7S
SNARE complex was significantly increased in the syx’ %’
mutant compared to that in the wild type (CS) at 22 °C (n= 50,
p < 0.05) (Figure 6A and 6B). Similarly, the level of SNARE
multimers was also significantly increased in the mutant (n =
9, p < 0.05). These results show that the level of SNARE
complexes is increased in the syxj_w mutant. Concerned that
the SDS-resistant SNARE complex is unique to neuronal
SNAREs [37,38], we next used an alternative method to
immunoprecipitate the SNARE complex from fly-head
extracts using a polyclonal antibody against one of the
SNARE components, SNAP-25 [39,40]. Our results showed
that the SNAP-25 antibody readily and specifically precipi-
tated syntaxin 1A and synaptobrevin, but not tubulin (Figure
6C). When normalized to the amount of proteins precipitated
from the head extracts in the wild-type flies, the levels of
syntaxin 1A, synaptobrevin, and SNAP-25 were all increased
slightly (Figure 6D; n = 4). Even though these changes are not
statistically significant, the trend is consistent with those
observed for the SDS-resistant complexes.

The T2541 Mutation Stimulates the Rate of Constitutive
Fusion at Synapses

The level of the SDS-resistant SNARE complex has been
shown to correlate well with the level of exocytosis [39,41,42].
We next tested whether this increase in the rate of SNARE
complex assembly had any physiological effects on synaptic
vesicle fusion. We recorded action potential-independent
and constitutive (or spontaneous) miniature excitatory
postsynaptic potentials (mEPSPs or minis) from third instar
larval body-wall muscles innervated by motoneurons [43,44].
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Figure 7. Both Constitutive Secretion and Ca®"-Triggered Vesicle Fusion Are Dramatically Enhanced in syx>%° Mutant Flies

(A-C) The rate of spontaneous fusion of synaptic vesicles detected as mEPSPs (or minis) is significantly increased in sy

~69 mutants compared to the

wild-type control (+/+). Representative recordings of minis and histograms of mini frequency from the wild-type and the mutant larvae are shown in (A)

and (B). The average frequency of minis is increased by 7-fold in the sy.

~69 mutant (B), whereas the average amplitude of these minis is similar (C). Note

that the increase in the rate of constitutive secretion persists in saline containing 0 [Ca®'] (B). These and all other electrophysiological recordings were

conducted at 19-20 °C.

(D-F) The amplitude of EPSPs triggered by action potential-evoked Ca®" entry is significantly increased in the syx>~®® mutant. Representative traces of

EPSPs, histograms of average EPSP amplitude, and quantal content from the wild type and the sy;

* p < 0.01; *** p < 0.001.
doi:10.1371/journal.pbio.0050072.g007

These mEPSPs are caused by constitutive secretion of
glutamate from the nerve terminal [43]. Surprisingly, we
found that the frequency of constitutive release was
dramatically increased some 7-fold in the mutant (n = 9)
compared to the wild type (n =8; p < 0.001) (Figure 7A and
7B). The average mini amplitude was similar in both the syxjf
*” mutant (n = 11) and the wild-type larvae (n = 8; p > 0.1)
(Figure 7C), suggesting that quanta and postsynaptic recep-
tors likely remain normal. Immunocytochemical studies of
glutamate receptors failed to show detectable differences
between the mutant and the wild type (unpublished data).
This mini recording was conducted in saline containing 0.8
mM Ca?" and 1 pm TTX, which was also used for evoked
synaptic potentials (below). The resting potential was not
different between these two genotypes (—69.7 = 1.2 mV, n=3§,
for the wild type, and —69.4 = 0.9 mV, n=29, for the mutant; p
> 0.5). In these and all other larval recordings shown in this
study, the muscle input resistance (between 5-9 MQ) did not
differ between the wild-type and the mutant larvae.

To test whether this increase in mini frequency depends on
extracellular Ca®", we recorded minis in a Ca®'-free saline.
The unusually high rate of spontaneous release remained in
the syxg_ég mutant in the absence of extracellular Ca®" (n=8),
but significantly higher than that in the wild type (n=38; p <
0.001) (Figure 7B). The resting potential was not different
(—69.75 = 1.18 mV, n=_8, for the wild type; —69.75 = 0.85 mV,
n = 8, for the mutant; p > 0.5). The lack of effects by Ca*"
removal on mini frequency is consistent with an earlier
report showing that Ca*"-free saline plus EGTA did not alter
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0808

5% mutant are shown in (D), (E), and (F), respectively.

mini frequency at the Drosophila larval NM] [19]. Furthermore,

mini frequency remained 13-fold higher in 5yx’t69

mutants
compared to the wild type in Ca®'-free saline containing the
membrane-permeable Ca®" chelator EGTA-AM (n = 4). These
results indicate that the T2541 mutant syntaxin 1A couples
the formation of SNARE complexes with constitutive vesicle

fusion even when the intracellular [Ca®'] is greatly reduced.

The T2541 Mutation Also Stimulates Ca?>™-Evoked Vesicle
Fusion, but Does Not Affect Vesicle Recycling

An increase in SNARE complex assembly could enhance
Ca%-evoked exocytosis. On the other hand, the dramatic
increase in the rate of constitutive vesicle fusion could
deplete the vesicle pool and reduce Ca®*™-evoked release. To
distinguish these possibilities, we recorded action potential-
evoked excitatory postsynaptic potentials (EPSPs) from
muscles bathed in 0.8 mM Ca" saline. We observed that the
amplitude of evoked EPSPs was also significantly increased to
37 mV (n=11) in the syx3769 mutant from 25 mV (n =9) in the
wild type (p < 0.005; Figure 7D and 7E). Because the average
mini amplitude was not significantly different between the
mutant and the wild type (p > 0.1), this increase in EPSP
amplitude most likely reflected an enhancement in presy-
naptic release. Factoring in the respective average mini
amplitude in these flies and after correction of EPSP
amplitudes for nonlinear summation [45,46], there was a 2-
fold increase in quantal content from 40.0 (n = 8) in the wild
type to 79.9 (n=11) in the mutant (Figure 7F; p < 0.001). As
with the mini measurement, there was no difference in
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Figure 8. The T254l Mutation in the Syntaxin 1A Does Not Affect
Synaptic Vesicle Recycling

(A and B) Representatwe traces of EPSPs from the wild-type (+/+ [A]) and
the sy; ° mutant larvae (syx/syx [B]) before, 4 min during, and 50 ms
after a 5-min repetitive stimulation at 10 Hz. The nerve is stimulated at
0.2 Hz prior to and after the repetitive stimulation. Note that the
extracellular [Ca>'] was adjusted to 1.5 mM in the wild type and 1 mM in
the mutant so that their basal transmitter release is similar.

(C) EPSP amplitudes decline after the onset of 10-Hz repetitive
stimulation over a 5-min period. The average amplitude of three
consecutive EPSPs is obtained at the onset of the 10-Hz stimulation (time
zero), at 30 sec, and at every minute thereafter. These average values are
then normalized to the basal EPSP amplitude evoked at 0.2 Hz prior to
the repetitive stimulation. The steady-state level is reached when the
rate of exocytosis equals that of vesicle recycling. The decline rate |s
essentially similar between the two genotypes, suggesting that the sy:
mutant does not differ significantly from the wild type in vesicle recycling.
(D) The RRP of synaptic vesicles can be depleted within a few stimuli.
This plot shows the relatively decline of the EPSP amplitude following
the first ten stimuli at 10 Hz. The nearly identical decline rate suggests
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that vesicle docking and priming is not reduced in the syx’*"*° mutant
despite the extraordinarily high rate of spontaneous fusion.
doi:10.1371/journal.pbio.0050072.g008

resting potentials of the muscle fiber between the wild type
and the mutant. These results indicate that the average
number of synaptic vesicles undergoing exocytosis induced
by an action potential is significantly increased in the syx3_69
mutant.

Another possibility predicted by our structural modeling is
that the T2541 mutation may slow vesicle recycling by
stabilizing post-fusion c¢is SNARE complexes. To test this
hypothesis, we repetitively stimulated the motor nerve at 10
Hz for a prolonged period (5 min). We adjusted the
extracellular [Ca2+] such that the initial EPSP amplitude was
similar between the wild-type control (at 1.5 mM Ca®") and
the syxﬁf’g mutant (at 1 mM Ca?") (Figure 8A and 8B). At these
[Ca®™], the resting potential was —76.5 = 2.6 mV (n = 4) and
—75.6 £ 1.6 mV (n = 6) for the wild type and the mutant,
respectively. The basal release was 52.8 = 1.0 mV (n =4) and
49.5 = 1.6 mV (n = 6) for the wild type and the syxsfﬁg
(p > 0.1), respectively. As previously shown, there was an
initial, rapid decline in the amplitude of EPSPs after the onset
of the moderate stimulation at 10 Hz [47]. The EPSP
amplitude then reached a steady-state level approximately
60%-65% of single-pulse-induced EPSPs (Figure 8C). Under
such stimulation conditions, the steady-state release level is
thought to reflect the balance between vesicle recycling and
exocytosis [47]. There were no statistical differences in the
rate of EPSP decline or the steady-state levels between the
wild-type and the syx%ﬁg mutant larvae (p > 0.05). EPSPs
recovered at a similar rate after the 5-min stimulation (Figure
8C). These results suggest that the T254] mutation does not
have a detectable effect on synaptic vesicle recycling.

At Drosophila NMJs, the readily releasable pool (RRP) of
synaptic vesicles is estimated to be 230, which can be rapidly
depleted within a few stimuli [47]. We examined the RRP by
measuring the relative amplitude of the first ten EPSPs after
the onset of the 10-Hz stimulation. Our results showed no

mutant

significant difference between the wild-type (n = 4) and the
syx’tgg mutant flies (n = 5; Figure 8D). Thus, the RRP of
synaptic vesicles is not reduced in the syx’ *’ mutant despite
the extraordinarily high rate of spontaneous fusion rate.
Taking into consideration the high rate of spontaneous
vesicle fusion, it is reasonable to assume that vesicle docking

3-69

is, in effect, increased in syx mutants.

The T2541 Mutation Increases Evoked Transmitter Release
in a Dominant Fashion and across a Wide Spectrum of
[Ca*]

Oligomerization of the 7S SNARE complex into high
molecular weight complexes is proposed to be essential for
vesicle fusion [39]. This implies that multiple SNARE
complexes are required to promote vesicle fusion. The
precise number of SNARE complexes required for vesicle
fusion is unknown, but is estimated to be between three and
15 pairs [3,48]. Hence, one could envision a scenario in which
the 1254 mutant syntaxin 1A exerts a dominant positive effect
on synaptic vesicle fusion in heterozygous mutant flies (i.e.,
flies that also have one copy of the wild-type syntaxin 1A) by
acting as part of the multimeric SNARE complex (Figure 9A).

April 2007 | Volume 5 | Issue 4 | e72



Intrinsic Regulation of SNARE Complex

T2541 mutant

wild type syntaxin 1A

' ' '

Mixture of wild type and mutant

Low rate of High rate of 22

constitutive secretion constitutive secretion
& evoked release & evoked release

B Cc

&“Mw\f\j\
\J\’JJ\M’\I\JU\.JJ\NM\ 0.8 mM Ca 8 i

Syx/+

>
250 mS g
5 e
£
0
D - E I
104 0.8 mMca® i 800+ 08mmca?
= 1 L 8o . )
T 8 4 s £ 600
> 1 L 60 E = o
e ¢ 3 £5 1
= i L 40w €3S 400 4
g 4 < % Sg ) kK
w I = B
£ 2 L 20 3 s 200+
= 1 J
0 0 0.
syx/+ syx/+ +/+ Syx/+  syx/syx
F sk
2 W —
%50- B syx+ *k
o 40 B syxssyx
b ]
2 30+
E- 9 *kk
F204
P ]
o 10+
w -

1.0 mM ca®*

0.4 mM

0.8 mM

Figure 9. The T2541 Mutation Exerts Dominant Positive Effects on Both Constitutive and Ca*'-Triggered Vesicle Fusion in syx’~®° Heterozygotes

(A) Models of multimeric SNARE complexes found in the wild type (+/+), the homozygous syx*° mutant (syx/syx), and the heterozygous syx* "%’ mutant
(syx/1). Oligomerization of a mixture of the wild-type and the mutant SNARE complex predicts that the T254] mutant syntaxin 1A has dominant positive
effects on vesicle fusion. The wild-type syntaxin 1A is illustrated in red, whereas the T254] mutant syntaxin 1A is in blue. For simplicity, SNAP-25 is
omitted from these models. PM, plasma membrane; SV, synaptic vesicle.

(B-D) Representative traces of minis and evoked EPSPs in the heterozygous larvae are shown in (B) and (C), respectively. The average mini frequency
and quantal content are shown in (D).

(E) The histogram shows that the normalized mini frequency in the heterozygote is significantly higher than that in the wild type, but much lower than
that in the homozygous mutant. ***, p < 0.001.

(F) A histogram of the average EPSP amplitude recorded from the wild type (+/4), the heterozygote (syx/4), and the homozygote (syx/syx) at three
different Ca®" concentrations: 0.4 mM, 0.8 mM, and 1 mM. At these Ca®" concentrations, the amplitude of EPSPs in the wild type is consistently lower
than those in the heterozygote and the homozygote. Note that the difference between the wild type and mutants (the heterozygote and the
homozygote) appears more dramatic at lower Ca*" concentrations. At higher Ca®" concentrations, this difference becomes smaller because EPSPs reach
the “ceiling” set by the reversal potential. The amplitude of EPSPs is similar between the heterozygote and the homozygote. **, p < 0.01; ***, p < 0.001.
doi:10.1371/journal.pbio.0050072.9g009

To test this hypothesis, we generated heterozygous syx’ *“4-
larvae. The resting potential of the muscle fiber in sy’ 4
larvae was —70.9 mV (n = 7) at 0.8 mM Ca®", which is not
significantly different from those in the wild type (+H; —69.8
mV) and the syxsfég/syx%&g homozygous mutant (—69.4 mV)
under the same [Ca®'] (p > 0.3). The frequency of sponta-
neous fusion (6.4 Hz; n = 7) was significantly higher than that

i), PLoS Biology | www.plosbiology.org

in the wild type (2.65 Hz, p < 0.001), but much lower than that
in the homozygote (19.67 Hz, p < 0.001). This observation is
consistent with the working model that I254-containing
syntaxin 1A has a dominant positive effect on vesicle fusion.

We next recorded evoked release in heterozygotes and
showed that the amplitude of evoked EPSPs (39 mV; n=9) was
similar to that in the homozygote (37.3 mV; p > 1), but
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significantly higher than that in the wild type (25.3 mV, p <
0.001) (Figure 9B-9E). These results indicate that the T254I
mutant syntaxin 1A also has a dominant positive effect on
Ca2+-triggered vesicle fusion. However, it is clear that
dilution of the mutant SNARE complex by the wild-type
syntaxin 1A does not reduce evoked release, as it does to
constitutive secretion. This observation is inconsistent with
the possibility that the T254] mutant syntaxin 1A enhances
CaZt influx, as one would expect a greater increase in evoked
release in the homozygote. A likely explanation we suggest is
that the T2541 mutant syntaxin 1A stimulates the formation
of SNARE complexes in a dominant fashion. For a given level
of SNARE complexes, the energy barrier for fusion correlates
negatively with the amount of the T2541 mutant syntaxin 1A.
Although this energy barrier is increased for constitutive
fusion in the heterozygote compared to the homozygote, this
barrier should be overcome easily by the rise of intraterminal
Ca®*". Our measurement of the SDS-resistant complex
confirmed that the amount of SNARE complex was similar
between homozygotes and heterozygotes (Figure S4).

This model further predicts that the increase in evoked
release should occur in both homozygotes and heterozygotes
at both low and high [C32+]. To this end, we recorded EPSPs
at two additional Ca*" concentrations (1 mM and 0.4 mM).
These Ca*" concentrations did not alter resting potentials
(unpublished data), but they did affect transmitter release
(Figure 9F). At 1 mM Ca®", the average EPSP amplitude was
similar in the heterozygote (syx4; 48.6 mV, n = 7) and
homozygote (syx/syx, 49.5 mV, n = 6), but was consistently
larger than the wild type (+4 42.7 mV, n=28; p < 0.01). At 0.4
mM Ca®", the amplitude of EPSPs in the wild type was quite
small (3.5 mV, n=29). In comparison, the amplitude of EPSPs
was significantly larger in both heterozygotes (13.5 mV, n=8)
and homozygotes (15.4 mV, n=9) of syxs’w (p < 0.001). The
average amplitude of EPSPs was then compared with those
seen at 0.8 mM [Ca®'] (Figure 9F). The relatively smaller
increase of EPSP amplitude at increasingly higher [Ca®h]
reflects the ceiling effect due to non-linear summation.
Nonetheless, these results show that evoked release is
dramatically enhanced in 1254-containing flies at a wide
spectrum of extracellular [Ca®"].

The Effect of the Mutant Syntaxin 1A Is Specifically
Rescued by Neuronal Expression of the Wild-Type
Syntaxin 1A

The possibility remains that the dominant positive effects
we have seen in the heterozygote could result from a second
site mutation elsewhere rather than the T2541 mutation in
the syntaxin locus. To address this concern, we generated
transheterozygous flies (syxj_éylsyx“zzy) in which the syx3_69
mutant chromosome was placed in trans to a null syntaxin
mutation (syx"zzg) [23]. In syxj'églsyxﬂzg mutants, the mini
frequency was 22.3 Hz (n = 9), which is significantly higher
than that in the wild-type larvae (3.2 Hz, n = 8; p < 0.0001)
(Figure 10A). At 0.8 mM Ca®", the evoked EPSP amplitude was
also significantly increased to 37.9 mV (n=9) from 29.5 mV (n
= 8) in the wild-type larvae (p < 0.01) (Figure 10B). The
resting potential of the mutant animal (-72.4 mV) was similar
to that (—73.8 mV) in the wild-type larvae. These results are
highly similar to those found in the syx5_6glsyx3_69 homozygote.
Along with the molecular evidence presented earlier, these
results provide further genetic and electrophysiological
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evidence that the effects we have observed in the syx’

mutant is specifically caused by the T2541 mutation in the
syntaxin gene.

To further demonstrate indeed the “neutralizing” effect on
the T2541 mutant syntaxin 1A is mediated by the wild-type
syntaxin 1A in the heterozygote, we then performed a genetic
rescue experiment in which we selectively expressed the wild-
type syntaxin 1A gene in postmitotic neurons using the Gal4-
UAS binary system [49,50]. When the wild-type syntaxin 1A
gene was expressed in the wild-type background (C155 Gal4/
+ UAS-Syx 1AH), it had no significant effect on either the
constitutive secretion rate or the amplitude of evoked EPSPs
compared to those in the wild-type larvae carrying the pan
neuronal Gal4 driver (C155 Gal4, n="7; p > 0.05) (Figure 10C
and 10D). However, neuronal overexpression of the wild-type
syntaxin 1A in the sy’ *null mutant background (i.e., C155
Gal4H UAS-Syx 1AM sy ®lsyx??2? [23]) resulted in a
dramatic reduction in the frequency of constitutive secretion
to 8.8 Hz (n=14) from 24.9 Hz (n=10) in C155 Gal4H- syx” "’/
syxAzzg mutant larvae (p < 0.001). This rate is significantly
higher than that in the C155 Gal4 larvae (5.3 Hz, n = 7) or
overexpression alone (C155 Gal4H; UAS-Syx 1AH 4.9 Hz, n=
9) (p < 0.05). Overexpression of the wild-type syntaxin 1A in
the syx3769/null mutant background also significantly reduced
the average amplitude of EPSPs from 49.8 mV (n = 10) in
C155 Gal4H syx%ég/syxﬂzg mutant larvae to 39.3 mV (n=14).
This EPSP amplitude is similar to that in the C155 Gal4H
UAS-Syx 1AH- background (38.0 mV, n =9), but significantly
higher compared to that in the C155 Gal4 larvae (32.8 mV, n=
7). These results demonstrate that neuronal expression of the
wild-type syntaxin 1A rescues the mutant phenotype by
specifically neutralizing the dominant positive effects on both
constitutive and evoked secretion induced by the T2541
mutant syntaxin 1A.

Discussion

This study reports the behavioral, electrophysiological,
biochemical, genetic, structural, and molecular results from a
re-investigation of the sy’ "% mutant in Drosophila. These
findings contradict an earlier report [21] on both the
experimental evidence and conclusions concerning the
effects of the T2541 mutation in syntaxin 1A on synaptic
transmission. Multiple lines of evidence demonstrate that the
T2541 mutation in the syx’ ®” mutant fly blocks neither
synaptic transmission nor SNARE complex assembly at
restrictive temperatures. More importantly, we have gone
steps further by revealing an evolutionarily conserved
structural feature among syntaxin orthologs in regulating
both constitutive secretion and C32+—regulated exocytosis.

Evidence That the T254] Mutation Enhances Both
Constitutive and Evoked Secretion

One of the major new findings from this study is that the
T2541 mutant syntaxin 1A in the syx'3769 mutant dramatically
stimulates vesicle fusion. At the restrictive temperature, the
syxs%g flies exhibit uncontrolled hyperactivities and en-
hanced neuronal firing. At the permissive temperature,
SNARE complex assembly is moderately enhanced, whereas
the rate of constitutive vesicle fusion is dramatically
increased in the syxifﬁg mutant. Importantly, this enhance-
ment of constitutive secretion persists in Ca’®"free saline and
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Figure 10. Genetic and Electrophysiological Evidence That Neuronal Overexpression of the Wild-Type Syntaxin 1A Specifically Rescues the syx>"’
Mutant Phenotype

(A and B) The increase in mini frequency and evoked EPSP amplitude persists in larvae carrying only one copy of the syx>*° mutant gene. This mutant
fly (syx3-%9/syx4229) is generated by placing one mutant gene in trans to the null mutation (syx?2?°) in the syntaxin locus. These electrophysiological
defects are nearly identical to those found in the syx’"%%/syx>"%° homozygote, but different in mini frequencies from the syx’"%°/4+ heterozygote. These
results demonstrate that the mutant phenotype is specifically caused by the syx’"% mutation. **, p < 0.01; ***, p < 0.001.
(C and D) Neuronal overexpression rescues the physiological defects observed in syx>*° mutants. In C155 Gal4 background, the syx>"%%/syx#%?° mutant
only expresses one copy of the T254I mutant protein. Under such circumstances, the C155 Gal4; syx>*%/syx*??° larvae display an extraordinarily high
frequency of minis and enhanced amplitude of EPSPs. Neuronal overexpression of the wild-type syntaxin 1A (UAS-Syx driven by C155 Gal4) in the
syxg'ﬁg/syx"zzg mutant background dramatically reduces mini frequency to a level slightly higher than that in the wild type (i.e,, C155 Gal4; UAS-Syx or
C155 Gal4 flies) (C). The EPSP amplitude is also similarly reduced to the wild-type level (D). Importantly, overexpression of the wild-type syntaxin 1A in
the wild-type background (i.e., C155 Gal4; UAS-Syx) has little effect on both the mini frequency and evoked EPSP amplitude compared to the C155 Gal4
flies. Thus, the rescuing effect on vesicle fusion by the wild-type syntaxin 1A is specific to the T2541 mutant syntaxin 1A in the syx’>** mutant. *, p <
0.05; **, p < 0.01; *** p < 0.001.

doi:10.1371/journal.pbio.0050072.g010

A229

when intracellular Ca®" is further reduced by chelation. This fusion. In heterozygous syxﬁég mutant (syx3769/+), the rate of
implies that spontaneous vesicle fusion is less dependent spontaneous fusion is slightly higher than that in the wild-
upon Ca®", a conclusion consistent with those reported in a type larvae, whereas evoked release remains at the homo-
number of synapses [16-18], including the Drosophila NM]J zygote level. Two lines of genetic and electrophysiological
(19]. Although we do not suggest that vesicle fusion is evidence suggest that this dominant positive effect is
absolutely independent of intracellular Ca®', our studies specifically associated with the T254I mutation in the syntaxin

support the notion that the T2541 mutation makes vesicle locus. First, the dominant positive effect persists in larvae

fusion more efficient, regardless of whether it is constitutive carrying only one copy of the T2541 mutation in the null

or CaQ+-regulated fusion.
Another major finding is that despite the high rate of

constitutive fusion, the vesicle pool is not depleted, implyin . 5.6
that vesicle docking or primirll)g s enhance}()i in the 3;3_6% rescues the effect of the T2541 mutant in the syx *“null

mutant background (i.e., sy’ ““Isyx???°). Second, neuronal
overexpression of the wild-type syntaxin 1A effectively

. . . . . . . mutant background. It is important to note that neuronal
mutant via a yet unidentified mechanism. Consistent with the ) s ) p A o
. . .. . . overexpression of the wild-type syntaxin 1A protein in the
increase in mini frequency, evoked transmitter release is

significantly increased in the sy’~*’ mutant. Thus, the T2541 wild-type background has little effect on both spontaneous

mutation stimulates both constitutive and evoked vesicle and evoked vesicle fusion. Therefore, the counterbalance

fusion. This increase in evoked transmitter release correlates exerted by the wild-type syntaxin 1A is specific to the T2541
well with the enhanced assembly of SNARE complexes in the mutant syntaxin 1A. Taken together, these observations lend
mutant fly. further support to the notion that the 1254 mutant syntaxin

The third interesting finding is that the T254I mutant 1A is more efficacious than the wild-type T254 syntaxin 1A in
syntaxin 1A exerts a dominant positive effect on vesicle promoting vesicle fusion.
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Potential Mechanisms Underlying the Effect of the T254l
Mutant Syntaxin 1A

How might the T254I mutation exert such a dramatic effect
on vesicle fusion? The precise mechanism is unknown;
however, we believe the effect of the mutant protein can be
better explained by examining the structural impact of the
point mutation on the SNARE complex. The formation of the
SNARE complex is generally accepted as an essential step in
vesicle fusion. This conclusion is supported by considerable
evidence accumulated over the last decade using a variety of
experimental methods, including the use of specific neuro-
toxins to cleave SNARE proteins, and genetic mutations or
deletion of SNARE genes [1-3]. Based on structural and
functional studies of the core complex [6-8], it has been
postulated that the assembly of the SNARE complex involves
a “zippering” process in which complex formation starts at
the N-termini of the four helices, followed by zippering of the
core “layer” of the SNARE bundle towards the C-terminal
bundles. The process of zippering is also believed to provide
the energy necessary to bring the vesicle close to the plasma
membrane [2,3,9]. To date, most of the data supporting this
zipper model came from observations of “loose” and “tight”
states of SNARE complexes in neuroendocrine cells [51], at
crayfish neuromuscular synapses [52], and in liposome fusion
[63]. It is also indirectly supported by genetic mutations of
the helical region of SNAREs (see discussions in [7]) and by
the ability of inhibitory peptides of the helical region of
SNAREs to block both core complex assembly in vitro and
transmitter secretion in PC12 cells [54,55]. At present, both
the precise mode of SNARE complex formation [56] and the
role of the complex in vesicle fusion [3,57] are not fully
resolved. Nonetheless, the zipper model serves as a good
starting point for experimental testing of SNARE structure
and function.

The T2541 mutation is located at a strategic location near
the end of the zipper, a presumed final step before vesicle
fusion takes place. We have made three interesting observa-
tions of the 47 layer by sequence and structural comparison.
First, with a few exceptions, nearly all syntaxins involved
predominantly in regulated vesicle exocytosis at synapses or
neurosecretory cells have a common hydrophilic residue,
threonine, at position 254 in the +7 layer. In contrast, most
syntaxins acting in the constitutive secretory pathways have
one of the highly conserved hydrophobic residues (I, L, or V).
Second, there is a conserved switch in the +7 layer packing
among SNARE complexes used in different secretory path-
ways. This layer is loosely packed in “synaptic” SNAREs, but
tightly bundled together in “constitutive” SNAREs, where
hydrophobic residues (I, L, or V) may enhance direct
intermolecular interactions among the four a-helices. Third,
our structural modeling suggests that the T254I mutant +7
layer is more tightly packed than is the wild type, and that it
resembles more the tight packing found in the endosomal
SNARE core complex [20].

Based on our sequence and structural analyses, we favor the
idea that a structural alteration of the +7 layer induced by the
T2541 mutation in syntaxin 1A may best account for our
experimental observations. The extraordinarily high rate of
spontaneous fusion detected in the syx’ °’ mutant appears to
support the “zipper model” or a modified zipper model [56],
suggesting that tightening the SNARE complex does promote

i), PLoS Biology | www.plosbiology.org

Intrinsic Regulation of SNARE Complex

vesicle fusion. That overexpression of T254 syntaxin 1A
specifically counteracts 1254 mutant syntaxin 1A in vesicle
fusion implies that the relatively loose packing of the 47 layer
containing the wild-type syntaxin 1A may serve as an internal
brake to dampen vesicle fusion. Once this brake is removed
by the T2541 substitution, the mutant SNARE complex lowers
the energy barrier for vesicle fusion beyond a point of no
return in a manner that is relatively less dependent on
intracellular Ca?" [15-19]. This working model also explains
why evoked release is enhanced in both homozygotes and
heterozygotes.

We should stress that our results do not permit us to
conclude whether or not SNARE complexes directly mediate
vesicle fusion. Although pairing of SNARE proteins has been
shown to mediate liposomal vesicle fusion in vitro [57], the
rate of liposomal fusion is slow. More importantly, new
evidence suggests that SNARE proteins alone may bring the
membranes in close apposition, but do not drive vesicle
fusion under more physiological conditions [58]. The failure
to mediate fusion in vitro suggests that other factors may
either assist SNARE function or directly mediate vesicle
fusion in vivo. Consistent with this idea, the vesicular ATPase
(Vo) and synaptotagmin I have been reported to act either
downstream of, or synergistically with, the SNAREs in vesicle
fusion [50,59]. It is interesting to note that a G50E mutation
in the N-terminal domain of SNAP-25 has previously been
found to enhance both constitutive secretion and Ca®'-
evoked release in Drosophila at the permissive temperature
[60]. Unlike the T2541 mutation, this GbHOE (G43E in
mammals) mutation is thought to cause a conformation
change of SNAP-25 such that the mutant SNARE complex is
more ready to mediate vesicle fusion. The precise mechanism
by which the G50E mutation promotes vesicle fusion remains
to be resolved. Nonetheless, the T2541 and GH0E mutations
offer two alternative structural changes to promote SNARE-
mediated vesicle fusion. It is evident that much is still to be
discovered about SNARE structure and function. The results
presented here reveal a novel intrinsic mechanism by which
SNARE-mediated vesicle fusion is regulated. These findings
not only advance the understanding of synaptic transmission,
but also have broad implications on vesicle fusion at different
cellular pathways.

Materials and Methods

Fly strains. The syxs_(’g mutant fly [21] was obtained from the

laboratories of Drs. Troy Littleton (Massachusetts Institute of
Technology), Barry Ganetzky (University of Wisconsin-Madison),
and Leo Pallanck (University of Washington). This mutant line was
maintained on a balancer chromosome (TM6B) and out-crossed to
prevent potential accumulation of modifiers. The syntaxin null allele
(syxAZZQ [23]) and UAS-Syntaxin [50] flies were obtained from Dr.
Hugo Bellen’s laboratory. The wild-type Canton S (CS or +H) strain,
Shibire®! (Shi"*’), and pamlytic”l (])amm) originally obtained from the
Bloomington Drosophila Stock Center were maintained in B. Z.’s lab.
Flies were cultured on standard fly medium at room temperatures
(~20-22 °C). Unless otherwise specified, 3- to 5-d-old flies of both
sexes were used in the adult experiments described.

Structural modeling and molecular dynamics simulations. The
modeling of the T2511 mutation (equivalent to the Drosophila T2541
mutation) in syntaxin 1A was accomplished using PyMol [61]. The
appropriate residue was modified (mutated) in the SNARE complex
(ISFC, chain B). Ray tracing for Figure 5C was also performed with
PyMol.

All dynamics calculations were carried out with GROMACS v3.3, in
which the Gromacs 96 force field was used throughout [35,36]. The X-
ray structure of the SNARE complex (chains A[synaptobrevin],
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B[syntaxin], C[SNAP-25], and D[SNAP-25] of 1SFC) was used as the
starting model. Ordered water molecules and ordered divalent ions
were excluded from this calculation. Hydrogen atom positions were
calculated with the pdb2gmx program provided by GROMACS,
resulting in 3,001 atoms (excluding SPC water molecules) in the
native structure. Sixteen sodium ions were selected by the genion
program included with GROMACS to negate the net negative charge
of the SNARE bundle. A rectangular box of water (the SPC water
model) extending 20 A in every direction from the boundary of the
protein component was calculated by the editconf program included
with GROMACS [35,36]. Initially, the protein structure was mini-
mized until convergence. Position-restrained molecular dynamics was
used to equilibrate (simulation time of 20 ps) the water molecules
with the protein. After energy minimization of the entire system was
completed (protein + solvent 4 counter-ions), 5 ns of molecular
dynamics trajectories were computed at 300 K. Once the system was
equilibrated, a representative model was extracted from the
trajectory (at 2 ns) and examined (Figure 5).

Preparation and detection of the SDS-resistant SNARE complex.
The methods described by Tolar and Pallanck (1998) [11] and by
Littleton et al. (1998) [21] were closely followed for fly treatments and
for the extraction of SDS-resistant SNARE complexes Briefly, adult
syx}_ﬁy and CS flies were exp()sed to 38 °C for 20 min or kept at 22 °C,
and then rapidly frozen in liquid nitrogen. Heads were separated
from the body by brief vortexing and approximately 20 heads were
collected on a sheet of paper under a constant superfusion with
liquid nitrogen. Taking care to avoid introduction of air bubbles, fly
heads were ground gently in 100-pl SDS sample buffer with a plastic
pestle in an Eppendorf tube followed by centrifugation. The
supernatant was collected, diluted to a final concentration at 0.25-
0.5 heads/10 pl in sample buffer, and loaded onto gels at 10-15 pl per
well. Samples were run on a discontinuous SDS-polyacrylamide gel: a
4% stacking gel, an upper 7.5%-8% resolving gel, and a lower 18%
resolving gel to minimize excessive transfer of the monomer [11].
Commercial 4%-18% gradient gels were also used in one fourth of
the experiments. Proteins were transferred to nitrocellulose mem-
branes by running at 30 V overnight in a 4 °C room, as outlined by the
manufacturer’s instructions (Bio-Rad, Hercules, California, United
States). Membranes were probed with a monoclonal antibody to
syntaxin 1A (8C3; 1:100) [21]. Bands representing monomeric
syntaxin 1A and the 7S complex were detected by enhanced
chemiluminescence (ECL; GE Healthcare, Amersham Biosciences,
Piscataway, New Jersey, United States) and quantified with Image]
(National Institutes of Health [NIH], http:/rsb.info.nih.govlij/). The
SNARE complex level is expressed as a 7S complex to monomer
(syntaxin) ratio and normalized to that in control (CS) flies at room
temperature. To obtain oligomeric or multimeric complexes of the
7S complex [39], we either prolonged the exposure time of the film or
loaded up to one head equivalent volume onto the gel. The ratio of
the multimeric complex to the syntaxin 1A monomer was determined
similarly to that for the 7S complex [11]. In most experiments, the
blot was re-probed for tubulin to ensure that the protein loading
level was similar in each lane.

Immunoprecipitation of SNARE complexes. Twenty-one adult fly
heads were collected from wild-type (CS) and syxj ~%9 mutant flies (4- to
5-d-old) and ground on ice in 100-ul immunoprecipitation (IP) buffer
containing 150 mM NaCl and 20 mM Tris (pH 7.5), and mini complete
protease inhibitors (which were added at one tablet/10-ml IP buffer;
Roche, Basel, Switzerland). The fly-head extract was mixed well with
4-ul 25% Triton X-100 (BioRad, Hercules, California, United States)
and incubated for 15 min on ice. After a brief and gentle spin to
remove cuticle debris, 20 pl of the supernatant was saved as “input”
for control loading. The remaining supernatant was incubated with
10-pl sera against the Drosophila SNAP-25 (rabbit, N-terminal [40], and
mixed with 20-pl prewashed CL-4B protein A Sepharose beads (GE
Healthcare, Amersham Biosciences) by gentle rotation for 1-3 h at 4
°C. After removing the supernatant, the beads were washed four times
with the IP buffer. The immunoprecipitates were eluted by boiling
the beads in 50-pl sample buffer. The precipitates along with “input”
were resolved on standard SDS gel and subject to Western blot
analysis. SDS-resistant complexes were prepared separately and
included on the gel as additional controls. The blot was sequentially
probed with the 8C3 syntaxin 1A monoclonal antibody, a neuronal
synaptobrevin (N-Syb) polyclonal antibody (guinea pig [62]), and a
different SNAP-25 antibody (which also recognizes the close homolog
SNAP-24 [40]). To ensure the specificity of immunoprecipitation, the
blot was also probed with an antibody to a-tubulin (Sigma, St. Louis,
Missouri, United States). The ECL method was used for protein
detection. The band intensity was quantified with Image] (NIH).

Electrophysiology. The standard method of third instar larval
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electrophysiology described by Jan and Jan (1976) [43] and by Stewart
et al. (1994) [63] was used to record spontaneous mEPSPs and action
potential-evoked EPSPs in current clamp mode. The saline [Ca # was
0 or 0.8 mM for mEPSP recordings and 0.4, 0.8, 1, or 1.5 mM for EPSP
recordings (specified in the text). A total of 1 uM tetrodotoxin was
added to the saline to block action potentials when minis were
recorded [44,64]. Becduse of the unusually high rate of spontaneous
minis in the ny “%Y mutant larvae, many minis were clustered
together or on top of one another. This made it difficult to ascertain
the amplitude of individual minis. In this case, minis were analyzed
following an EPSP after the membrane potential had returned to pre-
stimulation levels. Quantal content was determined as the ratio of the
average EPSP amplitude and the average mini amplitude after
correction of EPSP amplitude for nonlinear summation following the
methods described by Stevens (1976) [45] and Feeney et al. (1998) [46].
Corrected EPSP amplitude = E{Ln[E/(E — recorded EPSP)]}, where E
= difference between reversal potential and resting potential. The
reversal potential used in this correction was 0 mV [46]. For
simplicity, the average amplitude of EPSPs presented in Figures 9F,
10B, and 10D was not corrected for nonlinear summation. The room
temperature was 19-20 °C.

Mini recordings were also performed in larvae treated with EGTA-
AM (Invitrogen, Molecular Probes, Carlsbad, California, Unlted
States). The final concentration of EGTA-AM was 10 pm in Ca®'-
free HL-3 saline, diluted from a 40 mM stock in 20% Fluronic F-127
(a low-toxicity dispersing dgent) in dimethyl sulfoxide (DMSO). The
preparation was incubated in the EGTA-AM saline at room temper-
ature for 30 min and washed with Ca**-free saline prior to recording.
The effect of Ca®" chelation was monitored dt the end of the mini
recording. Upon switching back to 0.8 mM Ca®" saline, evoked release
was dramatically reduced (unpubllshed data), suggesting most, if not
all, of the large number of Ca®" ions evoked by an action potential
were chelated by the intraterminal EGTA. Control experlments with
Ca?'-free saline containing the same final concentration (0.025%) of
the Fluronic F-127/DMSO solvent were also conducted.

For the VCSI(,IC depletion assay, we used relatively higher concen
trations of Ca*" (1.5 mM for the wild type and 1 mM for the sy’
mutant) to ensure achieving a rapid decline of EPSP amplitudes.
Basal release was monitored at 0.2 Hz prior to a 5-min repetitive
stimulation at 10 Hz. Usually, the recovery from the 10-Hz
stimulation was also monitored by 0.2-Hz stimulation immediately
afterwards. The basal amplitude of EPSPs was averaged from at least
three consecutive EPSPs and used to normalize the average EPSP
amplitude during the 10-Hz stimulation. At the onset of repetitive
stimulation, three consecutive EPSPs were used to give the average
amplitude at time 0, at 30 sec, and at every minute during the
remaining the 10-Hz stimulation periods. The normalized plot, as
shown in Figure 8C, allows one to estimate the decline rate and
vesicle pools. The first ten EPSPs were also analyzed to estimate the
depletion rate of the RRP.

The method of Tanouye and Wyman (1980) [31] was adapted for
stimulating giant fiber neurons and for recording synaptic potentials
and action potentials in DLMs. Flies were mounted on a slide with
dental wax. Sharp glass microelectrodes (25 MQ, filled with 3 M KClI)
were used to record intracellularly from DLMs, whereas the giant
fiber neurons were stimulated with a sharp tungsten electrode placed
either inside the compound eye or in the cervical connective (1-6 V,
120-ps duration). A homemade temperature stage was used to rapidly
(within 45 s) increase the recording chamber to 38 °C. The
temperature probe was placed in dental wax next to the mounted
fly to ensure the accuracy of the set-point temperature. The fly
chamber was then rapidly cooled to room temperature by pumplng
ice-cold water through the metal stage. Wild type (CS), syx’ *°, and
Shi"! were used for this set of experiments. The room temperature
was 19-20 °C.

For ERG recordings, 2- to 3-d-old flies (CS, Shi”l, or syxj’ég) were
mounted on a slide with modeling clay and placed on a temperature-
controlled stage. A sharp tungsten electrode was inserted gently in
the thorax or abdomen of the fly and served as a reference electrode.
A sharp glass microelectrode was inserted just through the cuticle
into the compound eye. The fly was then allowed to adapt to the dark
for a few minutes. ERGs were evoked by rapidly exposing the eye to
white light for a brief duration (1-2 s). The fly chamber temperature
was raised to 38 °C using a homemade temperature controller. To
ensure the accuracy of the temperature experienced by the fly, the
monitor probe was placed as close as possible to the experimental fly.
Another experimental fly was mounted beside the fly being recorded
so that it could be monitored for paralysis during 38 °C and recovery
after the temperature was returned to the permissive temperature.

Kinetics of recovery from paralysis. Flies were incubated at 38 °C
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in water-warmed glass vials for 10 min and then transferred to a sheet
of paper placed on the lab bench for recovery at room temperature
(~22 °C). The time and number of flies ca})pable of standing were
recorded and plotted. A total of 230 syxj_ﬁ( flies were tested in 17
different trials (10-15 flies per trial). Wild-type (CS) flies were used as
controls (+H) in a few trials, and they were not paralyzed at this
temperature.

Videos of syx’"*’ and Shi*! in response to giant fiber stimulation.
Flies (syxj’w and Shi”l, 1- to 2-d-old) were mounted with their ventral
sides up on a slide with modeling clay and viewed with a dissection
microscope at 100X. Flies were placed in a chamber whose temper-
ature was rapidly raised to 38 °C within 45 s by a homemade
temperature controller and rapidly cooled to 20 °C (within 1 min) by
circulating ice-cold water around the chamber. A pair of sharp
tungsten electrodes was placed into the compound eyes to electrically
stimulate the giant fiber neurons in the brain (1-6 V, 100-us duration,
5 Hz). Spontaneous and evoked leg movements of these flies were
recorded using a digital camera. Videos S4 and S5 are on syfﬁéc) and
Shi"!, respectively. Still clips from these videos are presented in
Figure 2C.

Statistics. Results are presented as mean * standard error of the
mean (SEM). The paired Student #-test was used to analyze the level of
SNARE complexes, whereas the unpaired ¢-test was used to treat the
electrophysiological results. In all cases, differences of p < 0.05 were
considered statistically significant.

Supporting Information

Figure S1. Alignments of Amino Acids in the 0 to +8 Layers of the
SNARE Core Complex in Syntaxin Orthologs in Yeast and Arabidopsis

Top panel: Examples of syntaxin orthologs from the different cellular
compartments in the yeast are shown here. Note that, with the
exception of SSO1 and SSOZ2, all syntaxins functioning in intra-
cellular compartments have a conserved leucine at a position
equivalent to 254 in Drosophila syntaxin 1A.

Bottom panel: Arabidopsis has a large number of syntaxin orthologs.
With the exception of syntaxin 61 (which has a valine at position 254),
all others have a leucine at position 254.

The sequence for the core complex layer from 0 to +8 is compiled.
The +7 layer is identified with arrows. The amino acid (aa) sequence
was obtained from the NIH’s National Center for Biotechnology
Information (NCBI; http://lwww.ncbi.nlm.nih.gov) and aligned using
the software from DNAStar (http://[www.dnastar.com).

Found at doi:10.1371/journal.pbio.0050072.sg001 (2.0 MB TIF).

Figure S2. Optimization for the Detection of the SDS-Resistant
Complex

SDS-resistant SNARE complexes isolated from 3- to 5-d-old adult fly
heads are separated from syntaxin 1A monomers by SDS-PAGE and
detected with an antibody (8C3) to syntaxin 1A on a Western blot (A).
Syntaxin monomers and 7S SNARE complexes at different protein
levels (fly heads/lane) are detected using standard ECL methods. Band
intensity of the 7S complex of each lane is measured using Image]
(NIH), normalized to the maximal intensity, and plotted against the
number of fly heads loaded onto each lane (B). From three separate
experiments, it appears that the optimal detection range falls
between 0.25 head and one head/lane; 0.25-0.50 head was used per
lane for all experiments on the 7S complex.

Found at doi:10.1371/journal.pbio.0050072.sg002 (6.8 MB TIF).

Figure S3. Sequencing Confirms the syx’ ® Mutation in the Flies Used
in Our Experiments

Sequencing of the s)rx3_69 mutant confirms the single point mutation

(from ACC to ATC) resulting in a threonine to isoleucine mutation at
position 254 in the Drosophila syntaxin 1A.

Found at doi:10.1371/journal.pbio.0050072.sg003 (3.3 MB TIF).

Figure S4. The Homozygous and Heterozygous xyx';’w Mutants Have
Similar Amounts of SNARE Complexes

The amount of SDS-resistant 7S complex is similar between the
homozygote and the heterozygote at 22 °C. Representative Western
blots show the syntaxin 1A monomer and the 7S SNARE complex
obtained from heads of the homozygote (syx/syx) and the heterozygote
(syxA- [A]). The relative level of total proteins loaded in the lanes is
illustrated by the intensity of tubulin, shown at the bottom.
Histograms of ratios of the 7S SNARE complex to the syntaxin
monomer between these two genotypes are shown in (B). Note that
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the ratio is not normalized and that the difference of the ratios is not
statistically significant (p > 0.05).
Found at doi:10.1371/journal.pbio.0050072.sg004 (1.5 MB TIF).

Video S1. Spontaneous Behavior at Room Temperature

Shi'™!, sy®=, €S, and para®’ flies (1- to 2-d-old) were mounted ventral-
side up with modeling clay on a glass slide such that their legs and
abdomens were allowed to move. These flies were then placed on a
temperature-controlled stage under a dissection scope and move-
ments recorded with a digital camera. Spontaneous movements of
these flies were then recorded at the permissive temperature (20 °C).
Note that flies from the four genotypes spontaneously extended their
legs and moved their heads and abdomen.

Found at doi:10.1371/journal.pbio.0050072.sv001 (7.1 MB MOV).

Video S2. Spontaneous Behavior or a Lack of It at 38 °C

During a 5-min period of exposure to 38 °C, the Shi fly (upper-left
corner) and the para fly (lower-right corner) were completely
motionless due to depletion of synaptic vesicle pools or a failure to
propagate action potentials, respectively. As expected, the wild-type
(CS) fly (lower-left corner) did not stop extending its legs or moving
its head and abdomen. In contrast, the sy’ *’ fly constantly shook its
legs and vibrated its abdomen at a high rate.

Found at doi:10.1371/journal.pbio.0050072.sv002 (9.2 MB TIF).

Video S3. Recovery of Spontaneous Behavior at 20 °C

Upon returning to 20 °C, all four flies resumed spontaneous
movements. Note that at the restrictive temperature, Shi’ and para"’
flies were completely paralyzed, whereas the syx’®’ fly constantly
shook its legs and vibrated its abdomen.

Found at doi:10.1371/journal.pbio.0050072.sv003 (7.4 MB TIF).

Video S$4. Responses in syx’ ’ Flies to Giant Fiber Stimulation

A syx}(’g (1- to 2-d-old) was mounted with its ventral side up on a slide

with modeling clay and viewed with a dissection microscope at 100X.
This fly was placed in a chamber whose temperature was rapidly
raised to 38 °C within 45 s by a homemade temperature controller
and maintained at 38 °C during the experimental period. A pair of
sharp tungsten electrodes was placed into the compound eyes to
electrically stimulate the giant fiber neurons in the brain (1-6 V, 100-
ps duration, 5 Hz). Spontaneous and evoked leg movements of these
flies were recorded using a digital camera. Note that the sy~ fly
extended its legs in response to each stimulus. Rapid and constant
vibration of legs was also apparent in the syx3_69 fly at 38 °C. Still clips
from this video are presented in Figure 2C.

Found at doi:10.1371/journal.pbio.0050072.sv004 (8.9 MB TIF).

51

Video S5. Responses in Shi”’ Flies to Giant Fiber Stimulation

Unlike the syx3_69 fly, the Shi®*! fly did not respond to the electrical
stimuli delivered to the giant fiber pathway when paralyzed at 38 °C.
Still clips from this video are presented in Figure 2C.

Found at doi:10.1371/journal.pbio.0050072.sv005 (5.8 MB TIF).
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