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Skeletal Muscle Fiber Type: Infl uence 
on Contractile and Metabolic Properties
Juleen R. Zierath*, John A. Hawley

Skeletal muscle demonstrates a 
remarkable plasticity, adapting 
to a variety of external stimuli 

(Booth and Thomason 1991; Chibalin 
et al. 2000; Hawley 2002; Flûck 
and Hoppeler 2003), including 
habitual level of contractile activity 
(e.g., endurance exercise training), 
loading state (e.g., resistance exercise 
training), substrate availability 
(e.g., macronutrient supply), and 
the prevailing environmental 
conditions (e.g., thermal stress). This 
phenomenon of plasticity is common 
to all vertebrates (Schiaffi no and 
Reggiani 1996). However, there exists 
a large variation in the magnitude 
of adaptability among species, and 
between individuals within a species. 
Such variability partly explains 
the marked differences in aspects 
of physical performance, such as 
endurance or strength, between 
individuals, as well as the relationship 
of skeletal muscle fi ber type 
composition to certain chronic disease 
states, including obesity and insulin 
resistance.

In most mammals, skeletal muscle 
comprises about 55% of individual body 
mass and plays vital roles in locomotion, 
heat production during periods of cold 
stress, and overall metabolism (Figure 
1). Thus, knowledge of the molecular 
and cellular events that regulate 
skeletal muscle plasticity can defi ne the 

potential for adaptation in performance 
and metabolism, as well as lead to the 
discovery of novel genes and pathways 
in common clinical disease states.

How Is Skeletal Muscle Fiber Type 
Classifi ed? 

Much of our early understanding 
of the plasticity of skeletal muscle has 
been derived from studies undertaken 
by exercise physiologists (e.g., Holloszy 
1967). With the application of surgical 
techniques to exercise physiology in 
the late 1960s (Bergstrom and Hultman 
1966), it became possible to obtain 
biopsy samples (~150 mg) of human 
skeletal muscle, and by means of 
histological and biochemical analyses, 
specifi c morphological, contractile, and 
metabolic properties were identifi ed. 
In 1873, the French anatomist Louis 
Antoine Ranvier had already observed 
that some muscles of the rabbit were 
redder in color, and contracted in a 
slower, more sustained manner, than 
paler muscles of the same animal. 
These early observations formed the 
basis of the classical terminology of 
red and white muscle fi bers, which was 
subsequently found to be related to 
myoglobin (an iron-containing oxygen-
transport protein in the red cells of 
the blood) content (Needham 1926). 
Based upon histochemical staining 
(Engel 1962), muscle fi bers are now 
commonly distinguished as slow-twitch 

(ST), which stain dark or red, and fast-
twitch (FT), which stain light or pale. 
In humans, a further subdivision of the 
FT fi bers is made (Brooke and Kasier 
1970), whereby the more aerobic (or 
oxidative) FT fi ber is designated FTa, 
and the more anaerobic (glycolytic) 
fi ber is termed FTb. Under aerobic 
conditions (suffi cient oxygen supply 
to the working muscles), energy is 
produced without the production of 
lactate. Under anaerobic conditions 
(insuffi cient oxygen supply to the 
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working muscles), energy is produced 
via the glycolytic pathway, which results 
in lactate accumulation and in turn 
limits anaerobic exercise. Thus, muscle 
fi bers can be classifi ed in terms of 
contractile and metabolic properties 
(Table 1). 

All individuals have different 
capacities to perform aerobic or 
anaerobic exercise, partly depending 
on their muscle fi ber composition. In 
untrained individuals, the proportion 
of ST fi bers in the vastus lateralis muscle 
(the largest of the quadriceps muscles 
and the most commonly studied muscle 
in humans), is typically around 55%, 
with FTa fi bers being twice as common 
as FTb fi bers (Saltin et al. 1977). While 
marked differences in the metabolic 
potentials between FTa and FTb fi bers 
are observed in untrained humans, 
the absolute level for the activities 
of oxidative and glycolytic enzymes 
in all fi ber types is large enough to 
accommodate substantial aerobic and 
anaerobic metabolism (Saltin et al. 
1977). While there is a large degree of 
homogeneity within individual skeletal 
muscles from rodents (Delp and Duan 
1996), this is not the case for humans 
(Saltin et al. 1977). The dramatic 
heterogeneity of fi ber type composition 
between people may explain their 
remarkable variation in exercise 
performance.

Does Muscle Fiber Type 
Composition Infl uence Athletic 
Performance? 

During the 1970s and 1980s, it was 
popular to determine the muscle fi ber 
composition of athletes from different 
sports events. These studies revealed 
that successful endurance athletes have 
relatively more ST than FT fi bers in the 
trained musculature (Costill et al. 1976; 
Fink et al. 1977; Saltin et al. 1977). In 
contrast, sprinters have muscles that are 
composed predominantly of FT fi bers 
(Costill et al. 1976). Accordingly, the 
belief that muscle fi ber type can predict 
athletic success gained credibility. 
In particular, the notion that the 
proportion of ST fi bers might be a 

factor governing success in endurance 
events was proposed (Gollnick et al. 
1972; Costill et al. 1976). 

In this regard, the results of Fink 
et al. (1977) are important. These 
researchers determined the fi ber 
composition from the gastrocnemius 
muscle (the muscle of the calf of the 
leg) of 14 elite male long distance 
runners, 18 good (but not world-
class) male long distance runners, and 
19 untrained men. The elite group 
included Olympic medal winners 
(Figure 2) and American record 
holders at the time. Muscle from 
the elite runners contained a larger 
proportion of ST fi bers than either the 
good runners or the untrained men 
(79.0% ± 3.5% versus 61.8% ± 2.9% 

DOI: 10.1371/journal.pbio.0020348.g001

Figure 1. Anatomy of a Skeletal Muscle
Individual bundles of muscle fi bers are 
called fascicles. The cell membrane 
surrounding the muscle cell is 
the sarcolemma, and beneath the 
sarcolemma lies the sarcoplasm, which 
contains the cellular proteins, organelles, 
and myofi brils. The myofi brils are 
composed of two major types of protein 
fi laments: the thinner actin fi lament, 
and the thicker myosin fi lament. The 
arrangement of these two protein 
fi laments gives skeletal muscle its striated 
appearance. 

Table 1. Contractile Characteristics, Selected Enzyme Activities, and Morphological 
and Metabolic Properties of Human Skeletal Muscle Fiber Types

Characteristic  ST Oxidative FTa Oxidative FTb Glycolytic

Contractile characteristics

Time to peak tension 1.0 0.4 0.4

Ca2+ myosin ATPase 1.0 3.0 3.0

Mg2+ actomyosin ATPase 1.0 2.8 2.8

Enzyme activities

Creatine phosphokinase 1.0 1.3 1.3

Phosphofructokinase 1.0 1.5 2.1

Glycogen phosphorylase 1.0 2.1 3.1

Citrate synthase 1.0 0.8 0.6

Morphological properties

Capillary density 1.0 0.8 0.6

Mitochondrial density 1.0 0.7 0.4

Metabolic properties

Oxidative potential 1.0 0.7 0.2

Glycolytic potential 1.0 1.5 2.0

[Phosphocreatine] 1.0 1.2 1.2

[Glycogen] 1.0 1.3 1.5

[Triacylglycerol] 1.0 0.4 0.2

This table highlights the relationship between skeletal muscle fi ber-type composition and the indicated 
contractile and metabolic properties thats are consistent with differences in speed and endurance. All values are 
expressed as a fold-change relative to ST oxidative fi bers.
DOI: 10.1371/journal.pbio.0020348.t001
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versus 57.7% ± 2.5% respectively; p 
< 0.05). The values found for several 
of the elite runners were the highest 
observed in human muscle (> 92% ST). 
Moreover, the ST fi bers from the elite 
runners were 29% larger than FT fi bers 
(p < 0.05), and both ST and FT fi bers 
were larger in the good runners than 
in the untrained men. Because of the 
marked hypertrophy (bulk increase) 
of the ST fi bers in the elite runners, 
the cross-sectional area composed of 
these fi bers was greater than either the 
good runners or the untrained subjects 
(82.9% ± 3.1% versus 62.1% ± 2.6% 
versus 60.0% ± 2.7% respectively; p < 
0.05). When the data from the elite and 
good runners was combined, a positive 
correlation between the proportion 
of ST fi bers and the best 6-mile 
performance time was noted (r = −0.62, 
p < 0.05). 

However, fi ber type alone did not 
determine the performances of the 
elite athletes. For example, two athletes 
with similar best times for the 42.2 km 
marathon distance (approximately 
2 hr 18 min) had 50% versus 98% 
ST muscle fi bers. Subsequent work 
(Foster et al. 1978) revealed that 
endurance running performance 
was better related to an athlete’s 
maximal O2 uptake (VO2max; r = −0.84, 
−0.87, and −0.88 for 1-, 2-, and 6-mile 
times, respectively). Indeed, while 
an athlete’s muscle fi ber type is an 
important morphological component 
and is related to several contractile and 
metabolic properties (see Table 1), 
other physiological factors (e.g., VO2max, 
maximal cardiac output, and speed/
power output at the lactate threshold) 
are more likely to determine the upper 
limits of endurance capacity (Coyle 
1995; Hawley and Stepto 2001).

Do Alterations in Skeletal Muscle 
Fiber Type Contribute to Metabolic 
Disease?

The close coupling between 
muscle fi ber type and associated 
morphological, metabolic, and 
functional properties is not confi ned 
to athletic ability. Insulin sensitivity 
also correlates with the proportion 
of ST oxidative fi bers (Lillioja et al. 
1987). Specifi cally, insulin-stimulated 
glucose transport is greater in skeletal 
muscle enriched with ST muscle 
fi bers (Henriksen et al. 1990; Song et 
al. 1999; Daugaard et al. 2000), thus 
priming ST muscle for accelerated 

glucose uptake and metabolism. A 
shift in fi ber distribution from ST to 
FT fi bers gives rise to altered activities 
of key oxidative and glycolytic enzymes 
(Pette and Hofer 1980). Indeed, the 
ratio between glycolytic and oxidative 
enzyme activities in the skeletal muscle 
of non-insulin-dependent diabetic or 
obese individuals is related to insulin 
resistance (Simoneau et al. 1995; 
Simoneau and Kelley 1997). Similarly, 
with ageing and physical inactivity, two 
other conditions associated with ST-to-
FT fi ber-type transformation, oxidative 
capacity and insulin sensitivity, are 
diminished (Papa 1996). 

Genes That Defi ne Skeletal Muscle 
Phenotype

Skeletal muscle fi ber-type phenotype 
is regulated by several independent 
signaling pathways (Figure 3). These 
include pathways involved with 
the Ras/mitogen-activated protein 
kinase (MAPK) (Murgia et al. 2000), 
calcineurin (Chin et al. 1998; Naya 
et al. 2000), calcium/calmodulin-
dependent protein kinase IV (Wu et al. 
2002), and the peroxisome proliferator 
γ coactivator 1 (PGC-1) (Lin et al. 
2002). The Ras/MAPK signaling 
pathway links the motor neurons 
and signaling systems, coupling 
excitation and transcription regulation 

to promote the nerve-dependent 
induction of the slow program in 
regenerating muscle (Murgia et al. 
2000). Calcineurin, a Ca2+/calmodulin-
activated phosphatase implicated in 
nerve activity-dependent fi ber-type 
specifi cation in skeletal muscle, directly 
controls the phosphorylation state of 
the transcription factor NFAT, allowing 
for its translocation to the nucleus and 
leading to the activation of slow-type 
muscle proteins in cooperation with 
myocyte enhancer factor 2 (MEF2) 
proteins and other regulatory proteins 
(Chin et al. 1998; Serrano et al. 2001). 
Calcium-dependent Ca2+/calmodulin 
kinase activity is also upregulated by 
slow motor neuron activity, possibly 
because it amplifi es the slow-type 
calcineurin-generated responses 
by promoting MEF2 transactivator 
functions and enhancing oxidative 
capacity through stimulation of 

mitochondrial biogenesis (Wu et al. 
2002). 

PGC1-α, a transcriptional coactivator 
of nuclear receptors important 
to the regulation of a number of 
mitochondrial genes involved in 
oxidative metabolism, directly interacts 
with MEF2 to synergistically activate 
selective ST muscle genes and also 
serves as a target for calcineurin 
signaling (Lin et al. 2002; Wu et al. 
2001). New data presented in this 
issue of PLoS Biology (Wang et al. 2004) 
reveals that a peroxisome proliferator-
activated receptor δ (PPARδ)-mediated 
transcriptional pathway is involved in 
the regulation of the skeletal muscle-
fi ber phenotype. Mice that harbor 
an activated form of PPARδ display 
an “endurance” phenotype, with a 
coordinated increase in oxidative 
enzymes and mitochondrial biogenesis 
and an increased proportion of ST 
fi bers. Thus—through functional 
genomics—calcineurin, calmodulin-
dependent kinase, PGC-1α, and 
activated PPARδ form the basis of a 
signaling network that controls skeletal 
muscle fi ber-type transformation and 
metabolic profi les that protect against 
insulin resistance and obesity. 

The transition from aerobic to 
anaerobic metabolism during intense 
work requires that several systems are 
rapidly activated to ensure a constant 
supply of ATP for the working muscles. 
These include a switch from fat-
based to carbohydrate-based fuels, 
a redistribution of blood fl ow from 
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Figure 2. Microscopic View of the 
Gastrocnemius Skeletal Muscle from a World-
Class Marathon Runner, Frank Shorter (Olympic 
Gold Medalist, 1972; Olympic Silver Medalist, 
1976)
The darkly stained fi bers are relatively 
slow in contractile rate and are ST. 
These fi bers demonstrate a higher 
aerobic (oxidative) capacity and a lower 
anaerobic (glycolytic) potential than the 
lighter stained FT fi bers. Shorter’s muscle 
contains approximately 80% ST fi bers. 
Reproduced with kind permission from 
David L. Costill and William J. Fink. 
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nonworking to exercising muscles, 
and the removal of several of the by-
products of anaerobic metabolism, 
such as carbon dioxide and lactic acid. 
Some of these responses are governed 
by transcriptional control of the FT 
glycolytic phenotype. For example, 
skeletal muscle reprogramming from 
a ST glycolytic phenotype to a FT 
glycolytic phenotype involves the Six1/
Eya1 complex, composed of members 
of the Six protein family (Grifone et al. 
2004). Moreover, the Hypoxia Inducible 
Factor-1α (HIF-1α) has been identifi ed 
as a master regulator for the expression 
of genes involved in essential hypoxic 
responses that maintain ATP levels 
in cells. In this issue of PLoS Biology 
(Mason et al. 2004), a key role for 
HIF-1α in mediating exercise-induced 
gene regulatory responses of glycolytic 
enzymes is revealed. Ablation of HIF-
1α in skeletal muscle was associated 
with an increase in the activity of rate-
limiting enzymes of the mitochondria, 
indicating that the citric acid cycle 
and increased fatty acid oxidation may 
be compensating for decreased fl ow 
through the glycolytic pathway in these 
animals. However, hypoxia-mediated 
HIF-1α responses are also linked to the 
regulation of mitochondrial dysfunction 
through the formation of excessive 
reactive oxygen species in mitochondria.

Can You Become a Slow-Twitcher?

With the 2004 Olympics still fresh on 
our minds, many will ask: Who has the 
right stuff to go the distance? Athletes 

like Olympic champion Frank Shorter 
are clearly exceptional and represent 
an extreme in human skeletal muscle 
phenotype. Realistically, few of us 
can ever hope to run a marathon 
in world-class time. However, there 
may be cause for some optimism for 
the average mortal, since endurance 
exercise training in healthy humans 
leads to fi ber-type specifi c increases in 
the abundance of PGC-1 and PPAR-α 
protein in skeletal muscle (Russell et al. 
2003). Moreover, functional genomics 
support the concept that skeletal 
muscle remodeling to a ST phenotype, 
either through activated calcineurin 
or PPARδ, can protect against the 
development of dietary-induced insulin 
resistance (Ryder et al. 2003) and 
obesity (Wang et al. 2004). The results 
of these studies have clinical relevance 
since insulin-resistant elderly subjects 
and offspring of patients with type 2 
diabetes mellitus have skeletal muscle 
mitochondrial dysfunction (Petersen et 
al. 2003; Petersen et al. 2004). Clearly, 
further translational studies in humans 
are required to test the hypothesis 
that increasing the proportion of ST 
oxidative muscle fi bers will overcome 
the mitochondrial dysfunction and 
metabolic defects associated with 
insulin-resistant states. �
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Figure 3. Exercise-Included Signaling Pathways in Skeletal Muscle That Determine Specialized 
Characteristics of ST and FT Muscle Fibers
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